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This paper introduces an efficient representation and feature extraction technique for 3D pose estimation
of objects, incorporating a novel mechanism for the exploitation of the extracted visual cues.
A combination of a fuzzy clustering technique for the input space, with supervised learning, results in
a problem of reduced dimensionality and an efficient mapping of the input-output space. While other
neural network-based approaches for 3D pose estimation focus on reducing dimensionality based on
input space characteristics, such as with PCA-based approaches, the proposed scheme directly targets the
input-output mapping, based on the available visual data. Evaluation results provide evidence of low
generalization error when estimating the 3D pose of objects, with the best performance achieved when
employing Radial Basis Functions. The proposed system can be adopted in several computer vision
applications requiring object localization, pose estimation and target tracking.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The task of estimating the 3D pose of an object is among the
most challenging ones in computer vision due to its practical
significance in a plethora of diverse approaches. In recent years, a
number of applications have primarily focused on detection and
estimation of objects' pose from either a single or multiple
instances for a given template [1-3]. The ultimate goal is to diffuse
this technology to deliver efficient accomplishment of complex
tasks, such as object manipulation, robotic navigation, etc. [4-6].
Despite the substantial endeavors and certain achievements made
so far, no advanced computer vision system characterized with
sufficient trade offs between computational burden and perfor-
mance, has yet been built.

To achieve adequate performance, the complexity of a regressor
or a classifier needs to match the complexity of the modeling tasks
and in most cases is influenced by the input space dimensionality,
d, and the size of the sample data, N. Dimensionality reduction is
sought to bring down costs associated with gathering, storing and
processing data, limit modeling overfit and reduce the computa-
tional burden of the training task. Additionally, simpler input
models are more tolerant to noise, outliers and other disturbances,
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while the process is controlled in a more efficient way when
information is represented with fewer features. In computer vision
applications, input data is usually represented as (x,y)", where (x,y)
are the image coordinates and « is the dimension of the feature
vector extracted by the detector and descriptor, respectively [7].
In [8-10] state of the art dimensionality reduction frameworks
attempt to address issues that emerge in face recognition pro-
blems. Among the most popular feature extraction dimensionality
reduction techniques are the Principal Component Analysis (PCA),
the Independent Component Analysis (ICA), the Linear Discrimi-
nant Analysis (LDA) or the Isomap.

Although humans exhibit remarkable skills in estimating the
relative pose of rigid objects given an initial hypothesis, such an
ability is limited in contemporary computer vision systems. In this
paper we attempt to address this issue, by introducing a neural
network-based framework that is not only able to estimate the 3D
pose of any object contained in the database, but also to generalize
to unknown ones. The network is trained with numerous targets
contained in several available datasets [11,12]. Furthermore, the
training process is guided by a fuzzy evulsion of the centers of the
extracted features by applying the Fuzzy c-means algorithm [13].
The 3D pose of an object in an unknown training instance can be
considered as represented by the distances of the fuzzy centers
from one particular center, as shown in Fig. 1. The high-level
intuitive idea underlying the proposed method is that for a given
pose and for any object, there exist similar topological patterns
characterizing this pose. Should these patterns be able to be
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Fig. 1. In this figure the main idea underlying the proposed method is shown. After the extraction of keypoints (a) and in order to find the representative centers we perform
a clustering procedure (b). The distance of each of these clusters with a given one stands for the model of the object-target (c). As a final step, those distances are considered
as input to a neural network-based framework for estimating the 3D pose of the object (d).

extracted and recognized, the respective pose can be computed.
The way the network of the centers of the clusters changes from
one image shot to the other comprises such a pattern and, in order
to quantify it, the distances between the nodes of the network are
measured and kept. The proposed method involves a new input-
output mapping that reduces the dimensionality of the input
vectors with good performance. A number of experiments were
executed in order, firstly, to demonstrate the performance of the
present technique and, secondly, to evaluate several network
architectures in known datasets.

The contribution of this paper entails the formalization of this
new input-output method that outperforms the conventional
dimensionality reduction techniques widely used in image proces-
sing applications. In learning a representative description of a 3D
object pose, our algorithm requires limited supervision during the
learning process and modest pre-processing of the input vectors.
Moreover, experimental evaluation provided evidence of non-
linear mapping between input and output space, justifying our
choice to adopt a neural network-based strategy. In addition, we
analyze the input-output mapping process and discuss general-
ization issues on unknown objects. To the best of our knowledge,
in the field of neural network-based computer vision, such an
attribute of efficient data handling constitutes a novel approach.
Lastly, we present experimental evaluation on multiple network
architectures, which are parameterized by the number of the
extracted fuzzy clusters. The proposed method was compared to
other contemporary or well-established techniques for 3D pose
estimation and/or dimensionality reduction and was proved to
excel in efficiency, while exhibiting robustness against occlusions.

The remainder of the paper is structured as follows. Section 2
discusses related work in neural network-based solutions for 3D
object pose estimation and recent trends in feature representation
and extraction processes. The proposed method is described in
depth in Section 3. In Section 4 extensive quantitative and
qualitative experimental results are presented. Finally, concluding
remarks are presented in Section 5 along with some final notes
and an outlook to future work.

2. Related work

Although neural networks are common place in several ima-
ging applications, for the particular task of estimating the 3D pose
of an object limited only activity is reported. Both early and more
recent studies [14-18] showed that the adoption of neural net-
works in computer vision is recommended in cases where the task
in hand encompasses great physical complexity. In more detail, a
modification of Kohonen's self-organizing feature map (SOM) is
trained with computer generated object views corresponding to
one or more object orientation parameters. However, the methods
presented in those papers reported significant gains in perfor-
mance as demonstrated only over objects employed in training.
Furthermore, in [19] SOM theory is combined with a three layer
feed-forward network trained with dynamic learning vector
quantization (DVLQ). Objects used for training are sampled from
a limited database containing targets with minimal pose varia-
tions, whilst only two DoF's are efficiently accumulated.

Several methods in this area adopt dimensionality reduction
schemes with the PCA and its variations being the most popular
one. For instance, in [20] an appearance-based method for the
efficient estimation of the pose of 3D objects, where the PCA is
utilized for dimensionality reduction, is presented. The neural
network is trained with the resilient backpropagation method and,
as far as the rotation parameters of the pose are concerned, only
two DoF's are estimated, corresponding to in and out of image
plane orbits. An extension of the aforementioned technique is
found in [21] where input feature vectors are derived by nonlinear
PCA. Both methods fail to interpolate between two known pose
configurations, since they utilize object views with a sampling
interval of 3° and emphasize in distinguishing the input patterns
into the corresponding classes. From the relevant literature,
several other methods [22-24] could also be identified which,
however, have vague architecture descriptions and inadequate
robustness in performance.

Our work takes advantage of previous research conducted in
the area of feature representation and extraction for 3D object
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recognition and pose estimation [25-27,3]. Picking up the most
prominent patterns represents a challenging task with a signifi-
cant effect on the 2D-3D point correspondence [28]. In [29], a new
method for efficient feature selection based on a Fuzzy Functional
Criterion, for the evaluation of the linkage between the input
features and the output score, is presented. However, this techni-
que is dedicated, specifically, to the head pose problem, for which
it can report remarkable efficiency when trained with numerous
datasets. On the other hand, in [30] and its extension [31] it was
shown that a compact model of an object can be portrayed by
linking together diagnostic “parts” of the objects from different
viewpoints. Such “parts” are defined as large and distinguishable
regions of the objects that are composed of many local invariant
features. Despite the efficiency of this architecture, the method is
mainly devoted to 3D object categorization. To the best of our
knowledge, the closest work to our paper, as far as feature
representation and extraction is concerned, is presented in [32],
where the authors employ a method for extracting 4 or 5 close
features point, called Natural 3D Markers (N3Ms), which enjoy
distinctive photometric properties and equal distribution over the
object's visible surface. While the two approaches have similarities
we believe our model provides a more compact and abstract
representation of the 3D object.

3. Methodology

The proposed work is highly motivated by the remarkable skills
of humans in the particular task of finding the relative pose of
unknown objects given an initial hypothesis. Towards this end,
we attempted to build an advanced scheme that incorporates
sophisticated feature extraction aiming at simulating the non-
linear relation between train and target models. In this section
we present the input-output mapping process upon which the
training of the neural network-based approach is performed.
The overall system can be viewed as a mapping from a set of
input variables x =xy,...,X4, belonging to a feature-space X, to a
modeled output variable y = y(x; w)eY, with w denoting the vector
of the adjustable parameters. The ultimate goal of our system is to
learn a regressor g : X — Y from an a priori training dataset {x",y"},
in order to efficiently approximate the output )%, when an
unknown example X; is provided (viz. Fig. 4). The proposed
framework concerns the relative object pose estimation. It is
apparent that, for such a procedure a pair of images is required,
the first image being the reference, whilst the second being the
measured one. During the testing process, none of the two images
belong to the training set, whilst our feature extraction method
abstracts key-features whose inner combination, when projected
onto new established sub-spaces offers great generalization capa-
cities. Experimental results provide evidence that the proposed
technique enables the accurate estimation of the 3 DoF of any
testing object given that the latter lays in certain distances from
the sensor. Regardless of the objects used for training, through the
proposed feature representation and input-output mapping
our system is capable of generalizing to totally unknown objects.
Fig. 2 illustrates the basic components of our system that are next
discussed in the remainder of this section.

3.1. Input-output mapping

The labeled training dataset contains m training examples,
i.e. images, of k objects-targets along with the corresponding pose
groundtruth. The construction of the training set {x",y"} is based
on an iterative process over m images of k objects. For the
facilitation of the nomenclature and with a view to reader's better
understanding, the remainder of this section presents the

Labeled Training
Database

Labeled Testing
Database

eatt_xres
Coordmgtes

(u,v)

Training Set
( {x"

Fig. 2. Initially, labeled databases are divided into training and testing subsets,
whilst for every object of the first set features' coordinates (u,v)” are extracted. As a
follow-up step, the proposed input-output mapping technique takes over the
construction of the set {x",y"} that is used for training the regressor. The ultimate
purpose of our system is to provide an efficient approximation J; when an example
X, belonging to the testing subset, is presented to the network.

aforementioned iterative process for the specific object k*. Initially,
the image feature coordinates (u,v)’ are calculated, with p denot-
ing the number of the extracted keypoints. The next step is to
employ the Fuzzy c-means clustering algorithm, in order to
appoint feature vector e = (u*,v*), with the set of all feature vectors
being £ = {e® : ¢ is the number of clusters organized as vectors}.
Let e*e£* be a randomly selected example vector of clusters
drawn from £* = £. The proposed input-output mapping method
proceeds by computing the Euclidean distance between vector
e;e€ and anchor point e*:
. . C . 2
X =e-e"’= ¥ {e'-e*) 1
i=1
The most common approach for input normalization is the
linear transformation of given vectors so that input variables are
independent. Basically, such a kind of information transformation
is generally based on the mean removal method and results in sets
of input vectors that have zero mean and unit standard deviation.
However, this linear rescaling treats input variables as indepen-
dent, while in most of the cases they are not [7]. With a view to
achieve an efficient solution to this problem we adopted a strategy
which allows correlations amongst variables. Therefore, the input
variable X' is organized as a vector X = (x,...,Xc)T, while the sample
mean vector and the covariance matrix with respect to the £ data
points of the training set are

X"
1

o=
I ™M

X =
n

1

yo= X"=X)(x"-X)T (2)

1

> =

I M=

This normalization results in vectors with the input variables given
by the following formula:

X" =A"120Tx"-x) 3)

where U= (uy,...,u;) and A =(44,...,Ac) correspond to the eigen-
vectors and eigenvalues, respectively, which are calculated from
the covariance matrix Xu; = A:u;.

The proposed input output mapping can be summarized as
follows:

Step1: For each training image extract p SIFT features, denote
them as (u,vy’ and employ homography-based RANSAC for out-
liers' removal (Fig. 1(a)).
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Step2: Given the locations of the p extracted SIFT keypoints
(u,vy’ apply the Fuzzy c-means algorithm to determine vector
e = (u*v¥)° (Fig. 1(b), where c=8). We would like to state that
we do not cluster the key points in the training set into a fixed
codebook.

Step3: Select the cluster e* arbitrarily and build the input
training example i by calculating xi:Zf:1{ei—e*}2 (Fig. 1(c)).
We should emphasize that the dimensionality of the input vector
x! equals to the number of the extracted clusters c.

Step4: Each input vector X! is accompanied by the respective
output vector y3eR? corresponding to the 3 DoF groundtruth
rotational parameters.

3.2. Building the training set and simulating the network

The process presented in Section 3.1 iterates over m images of k
objects holding information about the pose of the target. Since the
employed databases contain numerous combinations of geometrical
orientations, the most challenging task consists of finding features that
repeat when matching one object's image with others depicting the
same target under different viewpoints. More specifically, training
datasets consist of images of objects shot every 5° and correspond to
known poses y"; the objects are placed on a turntable able to perform
rotations around all the three axes X, Y and Z. In order to clarify the
feature extraction process, the building of the training set and the
simulation of the network we illustrate the entire procedure in Fig. 3.
The training phase incorporates both the building of the training set
{x",y"} and the training of the regressor. Am as shown in Fig. 3(a),
stands for the tracking sensitivity of our system and its span, e.g.
[-30°, +30°], constrains the output of the regressor to the same range,
without affecting the efficiency of the tracking process though. The
regressor g, as shown in the particular example of Fig. 3(a), is a RBF-
based one dedicated to the estimation of the pose of the test object
Yt as g({x",y"): yeh). In order to evaluate the potential of the
architecture of each regressor we have examined the corresponding
mean squared errors. It was shown that the performance of a neural
network can be bootstrapped by adding noise to the input vectors
during the training process. Practically, according to [7], training with
noise approximates Tikhonov regularization. In cases where the inputs
do not contain noise and the size £ of the training dataset tends to
infinity, the error function containing the joint distributions p(t,,x) (of
the desired values for the network output y,) obtains the form

T 1 & n. ny2
E=lm oz 2, 20wt
1
= 5 TIU W p(t, 0 dt, d
K

1
=32 [, w)—t1p(t;|x)px) dt; dx

Let 6 be a random vector describing the input data with probability
distribution p(s). In most of the cases, noise distribution is
chosen to have zero mean ([ 6;p(5) d5=0) and to be uncorrelated
([ 6i6;p(6) ds = variancesy;). In cases where each input data point
contains additional noise and is repeated infinite times, the error
function over the expanded data can be written as

E= 53 [ 00wy +0-1 bt popcop) de deds

Expanding the network function as a Taylor series in powers of &
produces

a
V(X" W) +8) = y,(x"; )+ 251.%
1 1ls=0

1 &
+ 5 T2 i
T

oE?
0X10Xj 5:O+ C

By substituting the Taylor series expansion into the error function we
obtain the following form of regularization term that governs the
Tikhonov regularization:

E = E+variance x Q

with

2 2
Q= %%JZ Y { (%) + %{yA(X)—ta} %}p(talxm(w dx dt;

The final stage of the proposed framework encompasses
the training of the neural network-based regressor using the set
{x,y"} and the simulation of its output. The efficacy of the
proposed method trained with labeled training examples was
tested by means of two different experimental setups. During
the first experiment, the performance levels of our work were
assessed through several labeled testing images that do not belong
to the training set (Fig. 8). In order to further evaluate the
generalization capacities of the proposed framework, we utilized
totally unregistered objects (Fig. 9). The 3 DoF pose estimations
acquired are considered as successful in cases where the sum of
error for the 3 rotational angles is less than 5°. In-plane and out-
of-plane translations result in higher estimation errors that are
due to the limited size of the training set. The testing procedure of
our method may be summarized as follows:

Step1: For each testing image of the same object, extract p SIFT
features that are post-processed by the homography-based RAN-
SAC method for outliers removal.

Step2: Perform a clustering procedure over the locations of the
extracted SIFT features, via the Fuzzy c-means algorithm.

Step3: Randomly select a previously extracted cluster in order
to build the input testing example .

Step4: Present the appointed testing vector X; to the built
regressor (Section 3.1) in order to obtain an accurate estimation
about the 3 DoF rotational parameters of the testing object.

4. Experimental results

At this point it is very important to stress the serious lack of
databases devoted to 3D object pose estimation, contrasting to
those existing for recognition and classification purposes. For the
experimental evaluation of the proposed method we made use of
the only available datasets [11,12] for object configuration approx-
imation. In addition, the feature extraction process is accom-
plished using the SIFT algorithm [33] followed by homography-
based RANSAC [34] for outliers' removal. The proposed system is
compared with (a) a common neural network-based technique for
object pose estimation [20], (b) the standard baseline work
proposed by Lowe in [3] and (c) a recently presented method for
efficient point selection [32]. Moreover, as it is laborious to decide
the architecture of the network and no method ensures adequate
generalization, network configuration is mainly based on experi-
ence, even though, certain heuristics have claimed sufficient
generalization. Finally, regarding the feature extraction process,
the proposed system can be easily adjusted in order to employ any
combination comprising a detector and a descriptor and it is not
limited by the selection of SIFT. Likewise, concerning the clustering
procedure, there are no limitations, while FCM was selected in
order to credit a vague classification among the extracted visual
cues. According to the literature there are two ways to choose the
correct number of clusters [7]: (a) the “elbow” method, where the
right number of clusters is considered producing the maximum
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Training Module

Algorithm: Building training set {x",y"}

define R= rotation axis

define y"= known object pose
define k = # of objects

define m = # of images per object
define Am = sampling interval
forallR do

Testing Module

test
Yy

Evaluation of the Regressor: 180°
mse=g({x",y"}; y'es) - ytest
175°

for w=j:j+Am

//Find clusters using FCM
Eilw=(y % v *)iw
//Estimate distance between clusters
]
end
end

Output y"

yl y2....yl

0° |[5°

1%

ey ezt
end
end

Building the
training set {x",y"}

Input-Output
Mapping Process

_ n
for i=1:k Y g: Regressor 170°
for j=1:m
//Extract keypoints of image(i,j) || °© trainingdatapoints
ril=(u,v)i Q kernel function
//Find clusters using FCM
Eli=(u* v*)i

veeeeee XL
C].O-C:Ll CZO-CZI CLO-CLI
C1,-Ct, || C%,-C2,

Fig. 3. The process of building the training dataset of the proposed system: (a) The training module encompasses the process of building the training set {x",y"} and that of
training the neural network-based regressor. In the first instance, images of objects belonging to labeled datasets dedicated to training are drawn with the view to construct
the training set to be fed to the regressor. As a final step, images of targets associated with the testing databases are further processed in order to provide an estimation of the
pose of the test objects. (b) This figure demonstrates in a more illustrative way how a training example of the set {x",y"} is built. It, initially, entails the fuzzy clustering (blue
spots) on the extracted SIFT features (red dots) followed by the process of estimating the distance of clusters from a known one. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this article.)

discrepancy between two neighboring values of the cost function;
(b) by evaluating the clustering process based on a downstream
purpose (in our case the 3 DoF object pose estimation). We
adopted the second approach since we emphasize in solving the
pose estimation problem and not the efficient clustering one. SIFT
features for all the test images are clustered into the same number,
whilst the neural network is fixed, i.e. no changes can be done on
its nodes. Future work entails testing the performance of the
system under several mixtures of detectors and descriptors and
clustering techniques.

4.1. Training the network and convergence

We have tested the efficiency of our system for both Back-
Propagation (BP-based) and RBF (RBF-based) neural networks.
With regards to the Back-Propagation training schemes, several
heuristics that significantly improve the algorithm's performance
are presented in [35]. Among others, the tasks of normalizing
inputs, stochastic versus batch update and the selection of the
activation function affect directly the ability of the trained network
to generalize. No special input data normalization process is



R. Kouskouridas et al. / Neurocomputing 120 (2013) 90-100 95

Unlabeled
Testing
Examples
(viz Fig.9)

SIFT Key-point
Extraction

Feature
Representation

Final Pose
Estimation

Fig. 4. A schematic of the proposed methodology.

needed in the proposed system, as it incorporates efficient input-
output mapping where the inputs have zero mean value and unit
standard deviation. We have tested our system's performance with
training frameworks that are either batch-based or exhibit
pattern-by-pattern updating. Batch-based networks are trained
with the classic Levenberg-Marquardt algorithm [36] whereas
stochastic nets utilize the One-Step Secant [37] method.

Training networks with large number of training examples
constitute an interesting convergence procedure, since calculating
the local minimum instead of the global one is quite common.
In order to overcome such problems, we have adopted a regular-
ization process which also improves the generalization ability of
the network. Such a generalization procedure, in its general form,
involves modifying the performance function by a new penalty
term that incorporates the weights and biases of the networks.
The proposed system is further tested when the training function
is the Bayesian regularization framework as presented in [38].
Moreover, it is apparent that the size of the training set {x",y"} of
our system depends on the number of clusters c extracted and the
tracking sensitivity Am.

4.2. Dealing with occlusions and training with noise

In computer vision applications, a very interesting facet comes
to light in cases where the testing object is disturbed by partial
occlusions. Unlike humans who are able to simultaneously recog-
nize an object and estimate its pose in such conditions, vision
algorithms fall considerably short to achieving any similar results.
We have aimed at providing a solution to this problem by
enhancing our training set with images of partially occluded
objects. Partial occlusions are introduced artificially in the existing
databases with the percentage of obstruction lying in the range
[0-95]. Moreover, it was shown in Section 3.2 that a network's
performance, in cases of a large training example, is bootstrapped
by adding noise to the input vectors during the training process.
The training examples of our system include both partially
occluded objects and new vectors characterized as “noisy”. By

adopting the evaluation criterion presented in [32], we have tested
our system's variance against occlusions and compared it with
other highly related work producing the results depicted in Fig. 5
(a). In this figure, the condensed results from simulated networks
with over 200 testing examples are presented. According to the
adopted evaluation criterion, an estimation of the pose is con-
sidered successful, if the error of the estimated rotation para-
meters is less than 5°. The RBF-based version of our system
presented invariance against partial occlusions compared to the
Hinterstoiser et al. [32], Lowe [3] and Yuan et al. [20] methods. We
have further evaluated all methods for a permissible error of 3°
and the results are illustrated in Fig. 5(b). Compared to the results
depicted in Fig. 5(a), RBF-based nets still constitute the most
effective solution also for this problem, while BP-based ones
proved to be more tolerant to partial occlusions than Hinterstois-
ser et al. [32]. In turn, the PCA-based approach [20] documented
high variance to partial occlusions. We would like to state that for
the comparison of the proposed method and the PCA-based one
identical network architectures are utilized. Regarding the results
provided by the Lowe [3], they were somehow expected since
in [3], train and target models are assumed to be linearly related
when it turns out they are not. Fig. 8 illustrates the representative
visual results of the proposed method under varying percentages
of partial occlusion.!

4.3. Tracking sensitivity Am and comparison of network
architectures

In Section 3.2 we defined Am as the tracking sensitivity of our
method, which in turn, represents the range of the output of the
regressor, i.e. if Am=1-[-5°+5° or if Am=6-[-30°+30°].
Given a standard vision sensor that is able to capture 30 frames
per second, the latter corresponds to a tracking ability of either
300 deg./s or to 1800 deg./s. In other words, the proposed system
is able to efficiently track even unregistered objects and estimate
their pose regardless of movement velocity. Moreover, in order to
illustrate the influence of different network architectures on our
system's performance, we present relevant comparative results as
shown in Fig. 6. Training functions are parameterized with the
number of clusters extracted by the FCM algorithm, whilst RBF
family networks proved to be more stable along several variations
of Am. Concerning the Back-propagation-based networks the best
generalization error was achieved when training for 1000 epochs
with 2 hidden layers of 40 and 20 neurons respectively, using the
mean squared error as the performance evaluation function.
Concretely, we present the effect of the network structures for
nets trained with Bayesian regularization (Fig. 7(a)), the One-Step
Secant algorithm (Fig. 7(b)), the classic Levenberg-Marquardt
algorithm (Fig. 7(c)) and with Radial Basis Functions (Fig. 7(d)).
The visual outcome of the proposed framework whilst tracking
unregistered objects is depicted in Fig. 9 where an unknown test
example was presented to the system.

The size of the training set, without the addition of noise or
artificially generated occlusions, depends on the number of clus-
ters ¢ and the tracking sensitivity Am. For Am =6, i.e. a tracking
range [-30°,+30°], the size of training set is [c x 24 304] that
may rise to [c x 100 000] by adding noise and occlusion para-
meters. This results in large computational burden for a standard
computer. Practically, stochastic update-based back-propagation
networks would require a 12 h training process on an average
Windows-based PC with 8 GB RAM. Generally, BP-based architec-
tures were less demanding than RBF-based ones since the training

! The effect of partial occlusions on the performance of the proposed work is
presented in the following video: http://www.youtube.com/watch?v=SS-ZH1]IIr8.
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Fig. 5. Comparative evaluation of the proposed framework in cases where an estimation of the pose is considered successful if the error of the estimated rotation parameters
is less than 5 (a) and 3 (b) degrees, respectively. (a) The RBF-based version of the proposed framework is seen to be more tolerant to partial occlusions, as compared to the
one based on BP-based. It can also be seen that both the PCA-based technique [20] and the one presented in [3] are highly affected by partial obstruction. The results
presented in this paper are contrary to the satisfactory performance levels reported in [32]. (b) This figure presents comparative results in cases where an estimation of the
pose is considered successful if the error of the estimated rotation parameters is less than 3°. RBF-based nets proved to be more tolerant to partial occlusions than BP-based

ones, whilst both methods outperformed those presented in [32,20,3].
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Fig. 6. During tests the training functions of the networks are parameterized on the number of extracted clusters basis. Dashed lines represent networks based on 14 clusters
while solid lines correspond to nets based on 8 clusters with the selection of both of these figures based on numerous series of tests. Networks utilizing the RBF training
functions have shown the best tracking efficiency, followed by nets based on Bayesian Regularization, One-Step Secant and Levenberg-Marquardt, in that order.
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Fig. 7. This figure demonstrates the effect of network structures on the performance of our algorithm. The accuracy of the pose estimation method when training with only
one hidden layer was significantly lower than with two ones. However, in the case that the number of layers is larger than two, the calculated mean squared error on the
testing dataset rises dramatically. The architecture of the net plays also a significant role in the proposed method: the effect of the network size in the pose estimation
accuracy when training with (a) Bayesian regularization; (b) the One-Step Secant; (c) the Levenberg-Marquart algorithm; (d) regarding the RBF-based networks, higher

performance levels are exhibited for spread=0.75.

of the latter may last 220 h (on the expanded version of training
dataset). Fig. 10 illustrates additional visual results of the proposed
system with varying percentages of partial occlusions.

5. Discussion

In this paper a new neural-based solution to the 3D object pose
estimation problem was presented. The proposed system is based
on a novel input-output mapping with the learning process being
guided by a fuzzy clustering of the extracted visual cues. This new
input-output mapping comprises a key contribution of this paper,
by moving away from conservative dimensionality reduction
schemes, such as the PCA, which inevitably incurs information
loss. Concretely, our method builds an input vector of maximum
14 dimensions where in PCA-based methods, e.g. in [20], the
dimensionality of the input space is around 65 000. A series of
experimental setups were studied and evaluated proving, thus, the
validity of our approach when compared to other works in this
area. After training with the available databases for 3D object
configuration, the proposed system has been shown to be able to
estimate the 3D pose of any object, up to a scale, with remarkable

accuracy. Additionally, unregistered objects are efficiently tracked
in cases they lay in image planes that are proportional to those
used for training. Furthermore, evidence has been provided that
our system is more tolerant to partial occlusions, compared to
other related projects. This is achieved with the introduction of
tracking sensitivity, augmenting the tracking performance of the
system. As far as the neural network part of the framework is
concerned, after several experiments, RBF-based training func-
tions are shown to achieve the least generalization error as
opposed to the Back-Propagation-based ones. Moreover, experi-
mental results revealed two major issues: (a) The relation between
the input space, which is defined over the trained objects, and the
output one, characterizing the target models, is a non-linear one;
(b) our choice to adopt a neural network-based strategy, which
efficiently captured this non-linear binding, was totally justified.
We believe that the efficacy of the proposed method is primary
due to its input-output mapping and feature extraction and,
secondary, due to the attributes of the utilized network, i.e.
training with noise, RBF kernel. Looking ahead to future work,
the authors plan to construct a new database for 3D object pose
estimation, with translation parameters included. Moreover, a
global regressor based on committees of neural networks, to be
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b

Fig. 8. This figure presents the outcome of the proposed framework for the test objects of (a), (d) and (g) under varying percentage of artificially generated (due to database
shortages) partial occlusions. In the first two examples (b)-(f), our system is able to estimate the pose of the target remarkably well whilst, in the last case (i), partial
occlusions lead to a slight deterioration of our system's performance.

Fig. 9. Tracking an unregistered object in cluttered environment under different rotations over the three axes X, Y and Z.
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Fig. 10. Visual outcome of the presented neural network-based framework for five testing objects under varying percentage of artificially generated partial occlusions.

able to integrate information derived from numerous pattern
selection frameworks, is also considered.
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