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Abstract
In this paper, a novel solution to the compound problem of object recognition and 3D pose
estimation is presented. An accurate measurement of the geometrical configuration of a
recognized target, relative to a known coordinate system, is of fundamental importance and
constitutes a prerequisite for several applications such as robot grasping or obstacle avoidance.
The proposed method lays its foundations on the following assumptions: (a) the same object
captured under varying viewpoints and perspectives represents data that could be projected
onto a well-established and highly distinguishable subspace; (b) totally different objects
observed under the same viewpoints and perspectives share identical 3D pose that can be
sufficiently modeled to produce a generalized model. Toward this end, we propose an
advanced architecture that allows both recognizing patterns and providing efficient solution for
6DoF pose estimation. We employ a manifold modeling architecture that is grounded on a
part-based representation of an object, which in turn, is accomplished via an unsupervised
clustering of the extracted visual cues. The main contributions of the proposed framework are:
(a) the proposed part-based architecture requires minimum supervision, compared to other
contemporary solutions, whilst extracting new features encapsulating both appearance and
geometrical attributes of the objects; (b) contrary to related projects that extract
high-dimensional data, thus, increasing the complexity of the system, the proposed manifold
modeling approach makes use of low dimensionality input vectors; (c) the formulation of a
novel input–output space mapping that outperforms the existing dimensionality reduction
schemes. Experimental results justify our theoretical claims and demonstrate the superiority of
our method comparing to other related contemporary projects.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Recognizing patterns in measurement science is of
fundamental importance since it enables the efficient
accomplishment of several vital tasks in a plethora of diverse
applications. The bidirectional connection between pattern
recognition techniques and measurement technology was
recognized long ago [1]. On the one hand, measurements need

to be classified so that the measured signal can be further
studied; on the other hand, any pattern recognition based
technique is of no use unless real data are gathered by a
measuring system. Pattern recognition is the scientific field
which aims to provide algorithms able to categorize objects
into classes. The type of object/pattern is application specific
including any type of signal, such as sound waveforms, images
and measurements. Pattern recognition is a key element in
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decision making systems. Particularly, in imaging systems
where a camera records images, a pattern classification method
should be employed to describe, analyse and interpret the
sequential frames [2, 3].

In the field of computer vision and image understanding,
extensive emphasis is given to the 3D object pose estimation
problem, due to the fact that there is still no general
ground solution entailing both sufficient performance and
high generalization capacities. It is palpable that an accurate
measurement of the orientation of a target relative to the
camera’s plane is of great importance for several basic
computer vision tasks [4–6]. According to the literature,
the techniques dedicated to the 3D pose estimation problem
could be categorized into two major research streams. The
first category includes methods that utilize numerous model
images of training objects to construct large databases, which
are established in a supervised manner [7, 8]. The second
category, part-based (or constellation-based) architectures
entail unsupervised learning capabilities, whilst aiming at
extracting highly distinguishable areas of an object with a
view to empower generalization abilities [9, 10]. However, an
advanced imaging technique that mimics the remarkable skills
of humans, estimating the relative pose of objects given an
initial hypothesis, has yet to be built.

In this paper, we propose a sophisticated framework
capable of both recognizing objects and estimating their
pose in the 3D working space. Following the intuition that
(a) one object viewed under varying perspectives lays on
a well-projected subspace (figure 1(right)) and (b) different
objects captured under similar viewpoints share identical
poses (figure 1(left)), we formulate a manifold modeling
process that depends on the attributes of mutual information
and a constellation-based structure, respectively. The latter
entails the unsupervised clustering of the extracted visual
cues in order to find the corresponding centers that hold
both appearance and geometrical data. We then employ
two individual modules for recognition and pose estimation
purposes, respectively. Regarding the recognition module,
we propose a modified approach of a known dimensionality
reduction technique that constructs a similarity matrix based
on mutual information [11, 12] among objects and then
seek a low-dimensional representation that preserves the local
structure of the objects in the initial high-dimensional space.
Once the data are projected into the sub-space a support vector
machine (SVM) [13] classifier is responsible for providing
accurate recognition. Concerning the 3D pose estimation
module, the distances of each of the computed clusters from a
given one are taken into account through the establishment of
the manifolds. Although, the latter are of low dimensionality,
they are capable of remarkably distinguishing similar poses
of different classes. Finally, an accurate measurement of the
3D orientation of a testing object is obtained through a neural
network-based solution that incorporates a novel input–output
space mapping. The main contributions of our paper are: (i)
we employ a constellation-based architecture that, compared to
other related works [9, 10], bypasses the part selection process
using unsupervised clustering, while extracting local patches
encapsulating both appearance and geometrical attributes of

the objects; (ii) we propose a new manifold modeling approach
that, opposed to [14, 15], establishes input vectors of lower
dimensionality, whilst utilizing numerous datasets without
restricting the 3D pose estimation to cars only; (iii) both the
recognition and the 3D pose estimation modules are based only
on the properties of the established manifolds, thus, reducing
the complexity of the proposed system; (iv) we formulate
the new input–output space mapping that outperforms the
conventional dimensionality reduction techniques widely used
in image understanding applications. Experimental results
prove that there are indeed compact manifolds that can be
efficiently learnt from highly representative datasets and that
enable accurate object recognition and 3D pose estimation.
Finally, we comparatively evaluated the performance of our
method with other related projects, whilst experimental results
provide evidence of low generalization error.

The remainder of this paper is structured as follows.
In section 2, we review existing approaches that delve
into the recognition, 3D pose estimation and manifold
modeling problems. The overview of the proposed method is
presented in section 3, while the manifold modeling approach
that incorporates the recognition and 3D pose estimation
modules is introduced in section 4. Analytical experimental
evaluation along with comparative results are available in
section 5. Last, conclusions are drawn in section 6 along with
some final notes and an outlook to future work.

2. Related work

In order to adequately carry out 3D object pose estimation
tasks, computer vision methods should tackle one important
cascading issue that hinders their effective appliance. The
2D–3D image point correspondence problem is of
fundamental importance since its sufficient solution directly
enables the clarification of the 3D object pose estimation
task. Throughout the years, scholars have primarily focused
on designing and implementing techniques that solve the 3D
pose problem by applying conventional mathematical models,
e.g. planar homographies [16], contour extraction [17] or line-
based estimations [18]. However, deterministic approaches are
adopted to solve particular problems and, therefore, they lack
generalization capabilities in totally unknown tasks. Toward
this end, contemporary research efforts aim at designing
sophisticated algorithms that incorporate machine learning
subroutines [19, 20]. As a result, extensive emphasis is given
to the process of building the respective input vectors along
with their internal structure and dimensionality. In [21], the
latter is reduced through PCA, whilst an accurate estimation
of the 3D pose of an object is obtained via an appearance-based
method. Additionally in the same work, the proposed neural
network is trained with the resilient backpropagation method,
while only two DoFs are sufficiently computed. To address
the high dimensionality issue, Yuan et al [22] proposed the
usage of nonlinear principal component analysis (PCA) for the
extraction of the input vectors. Notwithstanding their sufficient
classification results, both methods [21, 22] sort interpolation
capacities mainly due to their oversampled datasets resulting
from a sampling interval of 3◦.
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(a) (b)

Figure 1. This figure illustrates the key idea underlying the proposed framework. Following the intuition that (a) different objects viewed
under the same geometrical positions share identical poses and (b) different views of the same object ‘lay on’ the same subspace, we model
the 3D pose and recognition manifolds, respectively. Both established manifolds are of low dimensionality and are capable of remarkably
distinguishing 3D pose and recognition patterns, respectively.

In this paper, we aim at computing the full 3D
pose of an object by proposing an approach that, among
others, encompasses a constellation-based (or part-based)
architecture. Generally, image understanding techniques of
this field focus on learning highly discriminative object
pose models by extracting individual parts of targets that
exhibit apparent local information [23, 24]. In these works,
experimental results prove that the efficiency of the 2D–3D
point correspondence subroutine is directly related to the
process of picking the most prominent visual patterns
available. More recently, in [25] a method that emphasizes
revealing the liaison between the built input vectors and
the corresponding performance measurement was presented.
Furthermore, as was shown in [9], any part-based architecture
is characterized by its remarkable ability to efficiently portray
object models by simply linking together diagnostic regions
of objects from different viewpoints.

Many dimensionality reduction (DR) techniques have
been proposed in the past few decades. In general, they can be
separated into supervised and unsupervised ones, i.e. the label
of each data sample x ∈ R

m, where m is the dimension of the
sample, is considered to be known during the execution of the
corresponding procedure. The most representative algorithms
of those major categories are PCA [26] and linear discriminant
analysis (LDA) [27]. PCA is a linear unsupervised technique
which, given a data matrix Xm×n, where n is the number of
samples, seeks to project the data to an orthogonal sub-space
such that the variance of the data is maximized. A well-known
linear supervised technique is LDA, which is a generalization
of Fisher discriminant analysis (FDA) that is suitable for multi-
class problems. LDA searches for a sub-space to project the
data such that the ratio of between-class to within-class scatter
is maximized.

There are many other linear methods, such as
independent component analysis (ICA) [28], where the
resulting projections are not necessarily orthogonal, yet
their statistical independence is maximized. Regarding the
nonlinear techniques, a considerable portion of them are
kernalized versions of linear algorithms. After the ‘kernel
trick’ [13] was introduced via support vector theory [13],
it was widely applied in many linear dimensionality
reduction methods, such as kernel–PCA [29] and generalized
discriminant analysis [30].

Other newly developed nonlinear techniques are
Laplacian eigenmap [31], local linear embedding (LLE)
[32] and ISOMAP [33]. Recently, a general framework has
been proposed [34], named graph embedding and providing
a theory that unifies most of the dimensionality reduction
techniques, such as the aforementioned. Along with the data
matrix Xm×n and a similarity matrix Fn×n, graph embedding
scheme constructs a graph G = {X, F}. Weight matrix
F encapsulates geometrical or statistical properties among
data samples in the original input space. The purpose is
to compute a low-dimensional manifold that preserves the
similarity characteristics among data, as documented in F . It is
worth mentioning that the graph embedding scheme supports,
besides the linear approach, also a kernelized and a tensorized
expansion.

Regarding the object recognition module, it is based on
the local preserving projections (LPP) [35] dimensionality
reduction technique, which has been successfully applied
in face recognition problems. LPP computes a similarity
matrix utilizing the L2 norm, while the proposed framework
exploits the mutual information (MI) criterion among two
images. Moreover, the SVM classifier creates a separation
hyperplane based on the geometrical characteristics of the
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training dataset, which is an intriguing property, suitable for
the discrimination of low-dimensional manifolds. Concerning
the processes of building a constellation-based architecture
and manifold modeling, the closest works to our paper are
presented in [10, 14, 15]. The ‘natural 3D markers’, as they
appear in [10], comprise a part-based structure that extracts
four or five close feature points, which encapsulate distinctive
photometric properties and possess equal distribution over
the visible surface of the testing objects. Notwithstanding the
reported efficacy of the method, as comparative experimental
results prove, ‘natural 3D markers’ fail to construct compact
and abstract representations of the 3D objects, whilst being less
tolerant to partial occlusions. Regarding the proposed manifold
modeling module, our work is influenced by those presented
in [14, 15]. In both papers, the authors showed that part-
based forms, opposed to holistic-based ones, are capable of
controlling more efficiently casual imaging disturbances, i.e.
background clutter, partial occlusions. Moreover, they proved
that solid pose and recognition manifolds can be adequately
learnt from several databases. However, our work outperforms
these methods due to the fact that (a) it requires less supervision
during the learning procedure without restricting the 3D pose
estimation to cars only; (b) the resulting manifolds are of very
low dimensionality, unlike in [14] and [15], which influences
directly the performance of any regressor or classifier.

3. Overview of our approach

The key idea underlying the proposed method, as already
depicted in figure 1, represents an advanced dimensionality
handling process that aims at establishing novel manifolds
for simultaneous recognition of unknown objects and the
estimation of their 3D pose. With a view to the reader’s
better understanding, in figure 2, we illustrate the main
building blocks of our method. Initially, labeled datasets,
for both recognition and 3D pose purposes, are divided into
training and testing subsets, respectively. We then employ
the manifold modeling module that aims at inducing an
architecture capable of (a) classifying numerous testing objects
into the corresponding categories and (b) projecting similar
poses of different objects onto the same subspace. Recognition
manifolds impose upon the context of mutual information
framework that is responsible for the efficient design of the
adjacency matrix needed. The latter is given as input to an
SVM-based classifier, which is trained over a large dataset
of training examples and that is responsible for providing
recognition results for new testing patterns supplied to the
system.

Regarding the 3D pose manifolds, unlike in [15], where
‘alignment’ and ‘expansion’ operations are employed, in
order to suffice for proper discrimination of high-dimensional
vectors, we propose a manifold modeling routine that
encompasses distance handling operations over the extracted
centers computed through unsupervised clustering. As a
follow-up step, the resulting manifolds are used to train a radial
basis functions (RBF)-based regressor that entails a novel
input–output space mapping. Finally, accurate measurements
of the 3D pose of testing objects is obtained by simulating the

proposed regressor. Opposed to [15], our method is capable
of establishing highly distinguishable manifolds without
requiring the testing objects to belong to the training set and
the same object category (e.g. cars).

4. Manifold modeling

4.1. Recognition manifolds

This section presents the object recognition module used in the
proposed approach. The aforementioned scheme is a two step
process, first a modified feature extraction technique is applied
and the resulting low-dimensional data constitute the input to
the SVM classifier [13]. MI [36] is used as a similarity measure
between two images [12, 37], yielding remarkable results.
MI has been successfully employed as a similarity measure,
specifically in the medical imaging domain [12], primarily
due to its robustness to outliers and its minimum complexity.
In particular, it measures the statistical dependence between
two random variables, which in our case correspond to the
context of two images or the amount of information contained
in an image compared to a baseline one. Moreover, it can be
equivalently interpreted as a measure that defines the degree
of dependence between a pair of images. This measure traces
its roots to information theory and is defined as follows:

I(Rv1, Rv2) =
∑

rv1∈Rv1

∑
rv2∈Rv2

P(rv1, rv2) log
PRv1,Rv2 (rv1, rv2)

PRv1 (rv1)PRv2 (rv2)
,

(1)

where Rv1, Rv2 are two random variables, PRv1 (rv1) and
PRv2 (rv2) are the marginal probability distribution functions of
Rv1 and Rv2, respectively, PRv1,Rv2 (rv1, rv2) indicates the joint
probability function and rv1, rv2 are variables that run through
the sets of all possible values of Rv1, Rv2.

MI’s relation to entropy is expressed via

I(Rv1, Rv2) = H(Rv1) − H(Rv1|Rv2) (2)

= H(Rv2) − H(Rv2|Rv1) (3)

= H(Rv1) + H(Rv2) − H(Rv1, Rv2) (4)

= H(Rv1, Rv2) − H(Rv1|Rv2) − H(Rv2|Rv1), (5)

where H(Rv1) and H(Rv2) are the entropies of Rv1, Rv2,
H(Rv1|Rv2) and H(Rv2|Rv1) are the conditional entropies of
Rv1 given Rv2 and Rv2 given Rv1, respectively, and H(Rv1, Rv2)

is their joint entropy [38]. In this paper, MI is employed as a
distance measure in a similarity matrix; thus, the normalized
variation of information [39] metric is used. Normalized
variation of information is defined as

dV I = H(Rv1|Rv2) + H(Rv2|Rv1) (6)

MV I = dV I

H(Rv1, Rv2)
(7)

and the inequality MV I � 1 holds always as proven in [39].
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Figure 2. The first stage of the proposed method incorporates the division of the available datasets into the corresponding testing and
training subsets. The latter are provided as input to the process of manifold modeling that establishes the recognition and 3D pose manifolds.
As a follow-up step, we train an SVM-based classifier and an RBF-based regressor in order to obtain reliable recognition results and to
acquire accurate 3D pose measurements, respectively. Finally, we evaluate the performance of our method in cases where an unknown
testing particle is provided to the system.

Locality preserving projections (LPP) [35] is a linear
dimensionality technique that comes under the graph
embedding framework and it is considered to be a linear
approximation of Laplacian eigenmap [31], a nonlinear
technique as mentioned in section 2. Unlike the PCA, which
aims to preserve the global structure of the data, LPP targets
to preserve the local structure. The proposed modified LPP
scheme defines the similarity via the normalized variation of
information metric. Initially, a graph G is constructed having n
nodes. For each pair (i, j) of nodes, where i, j = 1, 2, . . . , n,
an edge is drawn if the data sample xi lays among the k nearest
neighbors (k-NN) of x j, where k ∈ N. The similarity matrix
Fn×n is defined as follows:

Fi j =
{

exp −(1 − MV I ), Gi j = 1
0, Gi j = 0.

That is, Gi j = 1 indicates the existence of an edge whereas
Gi j = 0 the absence. The following minimization criterion
aims to preserve the similarity of the initial input space to the
corresponding low-dimensional space [35]:

n∑
i=1

n∑
j=1

(yi − y j)
2Fi j (8)

By applying algebra formulations, the minimization criterion
equals

1

2

n∑
i=1

n∑
j=1

(yi − y j)
2Fi j = 1

2

n∑
i=1

n∑
j=1

(
wT xi − wT x j

)2
Fi j (9)

= wT X (D − F )XT w (10)

= wT XLXT w, (11)

where D is a diagonal matrix and its elements are the
corresponding column summations of F , i.e. Dii = ∑

j Fi j.
L = D − F is the Laplacian matrix. A constraint is also

introduced: wT XDXT w = 1 and thus the minimization
problem results in

min
w

wT XLXT w
wT XDXT w

. (12)

The minimization criterion yields the optimal projection vector
w by solving the following generalized eigenvalue problem:

wT XLXT w = λwT XDXT w. (13)

According to the above analysis, our modified LPP method
and the original one presented in [35] form the graph G via the
k nearest neighbors method, which through the employment
of the Euclidean distance as a proximity measure extracts
geometrical attributes of the sought object. In addition, the
original LPP methodology forms the weight matrix F via
the application of a heat kernel, which is also based on the
Euclidean distance between the corresponding samples. In
this paper we have substituted the heat kernel by the MI,
which allows us to handle complex relationships between
the intensities in a pair of images with altering viewpoints.
Thus, the resulting matrix F is significantly sparser than
the original one, while in most of the cases, samples from
different classes produce a zero value in F . Sparsity is a key
element in order to encode knowledge, therefore an essential
tool in order to achieve great generalization capabilities.
Moreover, the proposed framework allows the exploitation
of the relationship among corresponding pixels contrasted to
the original LPP method that extracts only geometrical and
neighborhood attributes of the objects.

4.2. 3D pose manifolds

During the pose manifold estimation phase, we aim at building
a part-based architecture that depends on the extracted visual
cues over the surface of the object. In order for this structure to
be robust and feasible to be constructed, its members should
represent visual attributes of the objects that are not only
distinguishable enough, but also hold a significant quantity
of data. Toward this end, we address this issue by employing
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a part-based scheme that extracts key points, over the surface
of an object, which enjoy appearance-based properties along
with geometrical ones, i.e. part’s location distribution. Despite
the fact that the same notion characterizes the work presented
in [15], it fails to generalize to unknown objects, restricting
their performance to trained ones. We believe this is due to
the fact that the procedure of part extraction craves extensive
supervision since each part corresponds to a realization of the
probability density function (PDF) associated with the joint
distribution of appearance and geometry attributes of an object.
In order to enhance the generalization capacities of our method,
we revise unsupervised clustering capabilities with a view to
extract representative centers over the abstracted features of
the object. Concretely, we account for appearance-based data
by employing the SIFT descriptor [40], without being limited
to the particular selection. The extraction of SIFT features
is accompanied by a homography-based RANSAC [41] for
outlier removal. Additionally, geometrical attributes of the
objects are encapsulated through the implementation of the
K-means unsupervised clustering method.

Let Q(T, oi|a j) representing the raw intensity values for
the three-channeled image I of object oi ∈ [o1, o2, . . . , om]
with pose a j ∈ [a1, a2, . . . , an]. We then extract ρ key points
of interest and denote them as I(uρ, oi|a j)

d , u ∈ R
2, by

integrating the SIFT detector and descriptor, respectively.
Here, d corresponds to the dimensionality of the descriptor,
which is chosen to be 128, whilst the resulting vector is
normalized to unit length, in order to maintain invariance to
affine changes in illumination. Then we define the following
notions:

– u ∈ R
2 are the locations of the extracted appearance-based

features,
– c(ρ) represent the index of cluster (1, 2, . . ., l) to which

feature ρ at location uρ is randomly assigned,
– μl correspond to the position of cluster centroid l (μl ∈

R
2), and

– μc(ρ) represent the centroid of cluster to which example
uρ is assigned after one step of the algorithm.

The goal is to find those clusters that minimize the
following objective function:

J(c(1), . . . , c(ρ), μ(1), . . . , μ(l)) = 1

ρ

ρ∑
i=1

||ui − μc(i) ||2. (14)

This is an iterative process that executes till the convergence
of the cost function J(cρ, μl ). The computed clusters are
considered as subsets denoted as ξ = 〈μl, oi|a j〉 and represent
the built part-based structure for object oi observed under
pose a j.

For the purposes of the 3D pose manifold estab-
lishment and regarding the (oi∗ |a j∗ ) training object, we
assume that the computed graphs appoint the feature vec-
tor e with the set of all feature vectors being E =
{ec : c is the number of clusters organized as vectors}. Addi-
tionally, let e∗ ∈ E∗ be a randomly selected example vector
drawn from E∗ ⊆ E . The proposed manifold modeling frame-

work proceeds by computing the L2 norm between the vector
ei ∈ E and the anchor point e∗:

vi = ||ei − e∗||2 =
c∑

i=1

{ei − e∗}2
. (15)

As a next step, we learn a regressor that provides a mapping
from a set of input variables v = [v1, . . . , vd], belonging
to a feature-space V , to a modeled output variable ω =
ω(v; ζ ) ∈ �, with ζ denoting the vector of the adjustable
parameters. The ultimate goal of our system is to learn a
regressor τ : V → � from an a priori training dataset {vn, ωn}
in order to efficiently approximate the output �t , when an
unknown example Vt is provided. The proposed architecture
encompasses a new input–output mapping procedure that does
not require common dimensionality reduction operations. In
particular, opposed to [15, 21] where the input vectors are
of very high dimensionality, the established manifolds are of
low dimensionality and are directly fed into the regressor.
The most common approach for the input normalization is the
linear transformation of given vectors so that input variables
are independent. Such information transformation is generally
based on the mean removal method and results in sets of input
vectors with zero mean and unit standard deviation. However,
this linear rescaling treats input variables as independent,
while in most cases they are not [42]. With a view to
achieve an efficient solution to this problem, we adopted a
more prominent strategy which allows correlations amongst
variables. Therefore, the input variable vi is organized as a
vector v = [v1, . . . , vc]T , while the sample mean vector and
the covariance matrix with respect to the β data points of the
training set are

v = 1

β

β∑
n=1

vn


 = 1

β − 1

β∑
n=1

(vn − v)(vn − v)T . (16)

This normalization results in vectors with the input variables
given by the following formula:

ṽn = �−1/2BT (vn − v), (17)

where B = (b1, . . . , bc) and � = (λ1, . . . , λc) correspond
to the eigenvectors and eigenvalues, respectively, which are
calculated from the covariance matrix 
bφ = λφbφ .

5. Experimental results

In order to evaluate the performance of the proposed method
and, essentially, the discrimination ability of the established
manifolds, we utilize numerous databases containing several
objects under varying viewpoints. The aforementioned
modules were tested utilizing the ETH-80 dataset. ETH-80
consists of eight different classes; each class containing ten
different instances (for example, class car varies in color,
shape, convertible, etc) and each instant has been captured
at 41 different orientations. The image size of all images in the
dataset is 128 × 128 pixels. Moreover, in order to evaluate the
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experimental results and the generalization capabilities of the
corresponding modules, K-fold cross validation was applied
[43]. Regarding the databases utilized for the establishment
of the 3D object pose manifolds, we would like to highlight
the severe lack of datasets dedicated to 3D pose evaluation.
To address this issue, we utilize a rather expanded labeled
training set that comprises (a) images of real objects belonging
to the COIL-100 database [44] and (b) a large collection of
synthetically rendered objects, which are shot every 5◦ and
are available on-line [45]. Additionally, the labeled testing set
contains images of the CVL database [46] that includes several
objects captured under varying viewpoints in both cluttered
and uncluttered environments. Finally, we would like to state
that the proposed 3D pose module can be easily adjusted to
include any feature extraction or clustering algorithm and
it is not restricted by the selection of SIFT and K-means,
respectively. Indeed, several mixtures of detectors/descriptors
and clustering techniques were assessed and the proposed one
excels in accuracy and robustness. Yet it should be mentioned
that if execution speed is the criterion, a new set of SURF-
based features, as proposed in [47], should be employed.

5.1. Recognition manifolds

This section provides the evaluation of the proposed
recognition scheme. This work is experimentally compared
with state-of-the-art object recognition schemes that
incorporate well-known dimensionality reduction techniques
together with strong classifiers. More specifically, the
PCA+SVM that the method utilized for cephalometric analysis
[48] exhibit remarkable accuracy. In addition, GDA+SVM
[49] was also used for solving the classification problem of
detecting the existence of lung cancer. Recently, the authors in
[50] combined the LPP dimensionality reduction technique
with the SVM classifier forming a robust categorization
method that exhibits remarkable accuracy in the language
recognition problem. These methods constitute the state of
the art in the field of dimensionality reduction aiming to solve
efficiently different pattern recognition problems. As we have
previously mentioned in section 4.1, the goal of the proposed
method is to develop an enhanced methodology based on the
initial LPP algorithm, suitable for object recognition tasks.
Therefore, it is of great importance to comparatively examine
the performance of the proposed methodology against the
state-of-the-art ones.

Due to the fact that SVM is a binary classifier, the
one-versus-all [51] technique was adopted. The experimental
procedure involves the linear SVM. Different kernel types
were exhaustively tested (i.e. polynomial, Gaussian, sigmoid
and linear) during the training and testing procedure. However,
the linear one exhibited higher classification rates opposed to
other kernels, while such behavior of the SVM classifier can be
justified through the acquisition of a maximum margin linear
separation. As shown in [52], the derivation of a large margin
on the training data set leads with high probability to a classifier
endowed with large generalization capabilities. Additionally,
our theoretical claims are experimentally justified since our
method derives such a margin that enables the adequate
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Figure 3. The impact of recognition manifold dimensionality
concerning the classification results. The number of dimensions
beyond 180 cause decreasing accuracy results.

linear separation of the testing samples when projected onto
the new sub-space. Parameter selection holds a key role in
overall performance; thus, in order to be maximized, several
parameteric values have to be determined. The parameters that
have to be estimated are the number of neighbors in modified
LPP and LPP and the number of dimensions in modified LPP,
LPP and PCA, GDA technique was left out due to the fact that
the number of dimensions is the number of classes minus one.
Regarding the SVM, since the linear one was utilized, only the
relaxation parameter C has to be tuned. Figure 3 depicts the
efficiency of the aforementioned techniques with respect to the
dimensionality of the recognition manifold. The classification
accuracy was maximized when the module dimensionality was
set equal to 180.

As explained in subsection 4.1, a graph needs to be
constructed from both LPP and modified LPP module. In order
for the graph to place the edges between nodes, the nearest
neighbors of each sample are computed. Depending on the
number of neighbors, the graph and, thus, the similarity matrix
that is formed can be either dense or sparse. This parameter is
also application dependent, the contribution of the number of
neighbors is illustrated in figure 4. It is easily identified that
the most suitable selection is the one of five neighbors.

Concerning the SVM classifier, the linear kernel was
selected for the training procedure, and in order to maximize
the resulting classification rate, the regularization parameter
C had also to be fixed optimally. The performance of the
corresponding module was maximized by setting parameter
C = 100 as can be seen in figure 5. The one versus all
methodology was utilized for the corresponding multi-class
problem. The average recognition accuracy for each class
separately together with their respective standard deviation
is shown in table 1. These results debrief the per class average
classification performance for each subordinate algorithm. In
particular, the proposed method exhibits higher classification
accuracy in seven out of eight classes, as compared with the
benchmark methods. Additionally, by examining the standard
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Figure 4. The effect of number of neighbors used in an intermediate
step of both modified LLP and LPP techniques and the contribution
of the corresponding parameter to classification accuracy.
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Figure 5. The influence of relaxation parameter C utilized by the
SVM classifier on classification results.

deviation values, it is revealed that the modified LPP+SVM
possesses more tight boundaries for the majority of the classes.
The latter is an indication that the proposed dimensionality
reduction method (modified LPP) exhibits higher performance
rates than the initial one (LPP), thus boosting the generalization
capabilities of the SVM classifier. An error bar diagram
demonstrating the average overall accuracy of the methods
under evaluation, plotted with two standard deviations is
shown in figure 6. The fact that there is a slight overlap
between the error bar of the proposed methodology and those
of the benchmark methods indicates that the difference in
categorization performance is statistically significant.

5.2. 3D pose manifolds

Building the training set. The training phase of the proposed
module encapsulates the processes of building the training

set {vn, ωn} and the training of the RBF-based regressor τ .
The labeled training set comprises n training examples that
correspond to images of o j objects that are accompanied by
the respective pose groundtruth measurements. Additionally,
training examples that represent images of objects shot every
5◦ correspond to known object poses ωn, which are efficiently
measured via the process of placing each training target on a
turntable. It is apparent that the construction of the training set
{vn, ωn} imposes upon an iterative procedure over n images of
o j objects. Furthermore, the task of finding matches between
one image of an object and others depicting the same target
under different viewpoints stands for a routine of paramount
importance. We address this issue by introducing the tracking
sensitivity parameter m, which (a) aims at minimizing the
labor-intensive matching process by comparing one object’s
image to a limited neighbor images, i.e. if m = 1 the object’s
image is correlated only to photos depicting the same target
with +5◦ and −5◦ pose discrepancies around any axis; (b)
represents the range of the output of the regressor τ , i.e. if
m = 1→[−5◦, +5◦] or if m = 6→[−30◦, +30◦]; (c) given
a moderate vision sensor capturing 30 frames per second, it
offers a tracking ability of either 300 deg s−1 (m = 1) or
1800 deg s−1 (m = 6). The visual results of the proposed 3D
pose module is illustrated in figure 7.

It is apparent that, during the training process of the
proposed neural network-based solution, convergence is
of great significance. Our work depends on the efficient
establishment of highly discriminative manifolds that are
applied on large datasets. Generally, network training with
a large number of training examples constitutes an appealing
convergence task, since, most of the time, the calculation of the
local minimum instead of the global one is highly likely. In this
work, we address this issue by adding noise to the input vectors
during the training process, thus, expanding the training set
by replicating random input vectors. Therefore, we are able
to bootstrap the performance of the network avoiding local
minima.

Comparison with related methods and dealing with occlusions.
The performance of the proposed 3D pose module was
comparatively evaluated against other related works solving
for the 3D pose problem. Particularly, we compare our
method with (a) neural network-based solution: the work
of Yuan et al [21] that embodies PCA for dimensionality
reduction purposes; (b) a part-based architecture: the method
of Hinterstoisser et al [10] for constellation-based pose
estimation; (c) a part-based architecture and manifold
modeling method: the related approach of Mei et al [15]
for manifold modeling and 3D object pose estimation; (d) a
standard baseline technique: the classic least-squares solution
of Lowe [24].

The most common evaluation criterion of 3D pose
measurements is the one that studies the performance of
the respective work under partial occlusions, since the
latter affect directly the efficacy of any computer vision
application. Although humans are capable of simultaneously
recovering the 3D pose of a target under difficult occlusion
circumstances, such an inclination is limited in contemporary
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Figure 6. This figure illustrates the error bar diagram regarding the average overall accuracy of the methods under evaluation.

Figure 7. The visual outcome of the proposed 3D pose estimation framework for several test objects.

Table 1. Average classification accuracy (%) on the ETH-80 dataset.

PCA+SVM GDA+SVM LPP+SVM Modified LPP+SVM

Class Accuracy STD Accuracy STD Accuracy STD Accuracy STD

Apple 88.2146 4.2 89.2458 3.6 87.6356 1.6 97.1283 1.3
Car 86.7359 3.6 91.9551 3.5 89.1836 3.3 94.5367 0.4
Cow 79.1248 4.4 92.8547 1.8 94.2354 3.4 94.1496 1.2
Cup 91.8082 3.0 79.9376 3.1 81.4891 2.8 91.0254 1.1
Dog 92.8834 0.1 96.7538 0.8 95.8463 2.1 93.1253 0.2
Horse 93.7593 3.9 93.7652 3.3 92.2065 1.9 95.9371 0.2
Pear 92.9417 4.2 86.6273 0.1 88.9361 2.8 96.5991 0.8
Tomato 85.9304 3.1 88.6976 1.3 89.5497 3.1 94.4962 1.7
Overall 88.9248 2.3 89.9796 2.4 89.8853 2.0 94.6247 0.9

image understanding techniques. In order to deal with the
aforementioned problem and with a view to amplify the
performance of our method, we expanded our training set

with images of partially occluded objects. In more detail, we
artificially introduced partial occlusions in the existing training
set with the percentage of obstruction lying in the range
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(a) Comparative evaluation for a permissive error of 5 degrees.

(b) Comparative evaluation for a permissive error of 3 degrees.

Figure 8. By adopting the evaluation criterion of [10], we comparatively study the performance of the proposed method with respect to the
percentage of artificially generated partial occlusions over the surface of the testing objects. In (a) and (b), the aggregated results in cases
where a measurement of the 3D pose is considered successful if the error is less than 5◦ and 3◦, respectively, are presented.

[0–95]. Moreover, we adopted the evaluation criterion
presented in [10] so as to comparatively appraise the
performance of the proposed 3D pose module against
partial occlusions. The adopted evaluation metric considers
a measurement of the 3D pose of an object to be acceptable
when the error of the computed rotation parameters is less
than 5◦. Figure 8(a) depicts the superiority of our work against
other related projects, whilst providing evidence of being more
tolerant to partial occlusions. However, due to the fact that all
methods (including ours) make use of oversampled training
sets (e.g. objects shot every 5◦), we have further tested the
respective efficacy potentials for a permissible error of 3◦,
with the results being presented in figure 8(b). Once again, the
proposed 3D pose manifold modeling technique incorporating
an RBF kernel proved to hold occlusion invariance capacities
compared to the works of Yuan et al [21], Hinterstoisser et al
[10], Mei et al [15] and Lowe [24].

5.3. Generalization capacities

The goal of a machine learning application and, especially,
of its training procedure, is to build a function that models
adequately the training data. Additionally, the proposed

architecture should emphasize designing schemes that do not
construct statistical models of the process that generates the
data. This is how a network can maximize its generalization
capacities, that is, to make adequate predictions regarding
new input vectors. Over(under)fitting situations are closely
related to generalization issues due to the fact that they directly
affect its potential, whilst they are primarily avoided by the
introduction of regularization parameters. Toward this end,
in this paper, the proposed frameworks adopt regularization
frameworks that minimize the possibility of over(under)fitting.
Regarding the object recognition module, its generalization
capacity is limited to the classes of the ETH-80 dataset, whilst
as table 5.1 demonstrates, our method is capable of adequately
categorizing testing samples into the corresponding classes.
The proposed framework is capable of recognizing unknown
objects by making use of the MI-based algorithm, which
projects the samples onto a sub-space with linear separation of
the different classes. Additionally, we acquire 6 DoF accurate
measurements of unknown objects through the establishment
of low-dimensional pose manifolds that are projected onto
highly distinguishable sub-spaces. The resulting manifolds are
based on a sophisticated feature extraction and representation
method that, in contrast to other related projects, does not

10



Meas. Sci. Technol. 23 (2012) 114005 R Kouskouridas et al

Figure 9. The proposed recognition and 3D pose estimation method is capable of generalizing to unknown objects, such as a car and two
cups.

Table 2. Comparative evaluation of the generalization capacities of the algorithms. This table demonstrates the average pose estimation
success for 30 unknown objects belonging to the following classes. The work of Lowe [24] is not included in the table due to the fact that it
does not allow any generalization capacities.

Hinterstoisser et al [10] Yuan et al [22] Mei et al [15] Proposed method

Class Success (%) STD Success (%) STD Success (%) STD Success (%) STD

Apple 89.7248 3.2 81.4248 4.2 90.6795 1.3 91.9162 1.6
Car 92.9102 2.6 90.4102 3.5 95.9082 2.1 98.3649 0.9
Cow 91.0479 2.1 87.4479 2.9 90.7792 2.2 95.0159 1.8
Cup 93.2912 1.9 87.3912 1.8 92.0512 2.6 97.2148 0.8
Dog 88.9489 3.6 79.1489 3.2 88.7489 4.3 94.6656 2.1
Horse 91.5854 2.2 84.8854 4.2 91.8114 4.1 94.8161 1.7
Pear 86.8517 4.2 81.3817 2.9 90.5217 3.4 92.7584 1.2
Tomato 84.3607 3.1 75.1607 6.2 85.9607 2.7 90.1974 0.9
Overall 89.8401 1.5 83.4064 2.5 90.8076 1.4 94.3687 1.3

rely upon the attributes of the object class and requires
only minimum supervision during training. As presented in
table 2, the proposed 3D pose estimation module demonstrated
higher success rates, compared to related frameworks, for a
permissible error of 5◦. The testing subset consists of images of
objects that are totally different to those of the databases used.
They differ in the surrounding illumination circumstances,
image resolution and the captured object-target itself (still
belonging to one of the 8 classes). In figure 9, we demonstrate
the generalization capability of the proposed method. We
believe that our methods minimize the generalization error
mainly due to the underlying manifold modeling architecture,
the kernels and regularization blocks utilized.

6. Conclusion

We proposed a novel solution to the challenging tasks
of simultaneously recognizing objects and providing an
accurate measurement of their geometrical configuration in
3D space. Our method relies on the establishment of highly
discriminative manifolds that (a) model several variations of
the same object in the same loci (recognition manifolds); (b)
encapsulate the basic intuition that different objects viewed
under identical perspectives hold high dimensional data about
their pose (3D pose manifolds). Comparative evaluation of our
method against other related works of the field (a) validated our
theoretical claims, (b) provided evidence of low generalization
error and (c) regarding the 3D pose module, justified our choice
to adopt a neural network-based strategy. According to the
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methods presented by Yuan et al [22], Hinterstoisser et al
[10] and Mei et al [15], there is evidence that the relationship
between input and output spaces is a nonlinear one, while
artificial neural networks are the most efficient mechanisms
in modeling this liaison. Looking ahead to future work, we
plan to adjust the presented modules in order to employ them
in object manipulation, obstacle avoidance and other related
human–robot interaction tasks.
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