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Abstract
This paper presents a new illumination invariant operator, combining the nonlinear
characteristics of biological center-surround cells with the classic difference of Gaussians
operator. It specifically targets the underexposed image regions, exhibiting increased
sensitivity to low contrast, while not affecting performance in the correctly exposed ones. The
proposed operator can be used to create a scale-space, which in turn can be a part of a
SIFT-based detector module. The main advantage of this illumination invariant scale-space is
that, using just one global threshold, keypoints can be detected in both dark and bright image
regions. In order to evaluate the degree of illumination invariance that the proposed, as well as
other, existing, operators exhibit, a new benchmark dataset is introduced. It features a greater
variety of imaging conditions, compared to existing databases, containing real scenes under
various degrees and combinations of uniform and non-uniform illumination. Experimental
results show that the proposed detector extracts a greater number of features, with a high level
of repeatability, compared to other approaches, for both uniform and non-uniform
illumination. This, along with its simple implementation, renders the proposed feature detector
particularly appropriate for outdoor vision systems, working in environments under
uncontrolled illumination conditions.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Difference of Gaussians (DoG) is a well-established operator
in the field of computer vision, used for the extraction of
edges [1] or features, as part of the Laplacian pyramid [2].
The Laplacian pyramid is part of the scale-invariant feature
transform (SIFT) detector [3, 4], which is extensively used
in many computer vision tasks [5–7]. Although the SIFT
detector has been designed in such a way that it exhibits
some degree of illumination invariance (the local minima and
maxima keypoints in the scale-space are invariant with contrast
magnitude and thus, invariant with illumination changes), non-
uniform illumination conditions can still be a challenge. This
is clearly depicted in figure 1, in which a scene is captured

under three different kinds of illumination: uniform bright,
uniform dim and non-uniform. For each of these three cases,
the extracted keypoints and their sum total are shown, for
different threshold values. As expected, in all three cases
the number of extracted keypoints is inversely related to the
threshold value. Furthermore, lower threshold values (cases
D and E) result in the extraction of keypoints corresponding
to noise and not to any surface properties. Ideally, the total
number and locations of all extracted keypoints should be
identical in all three images, since they depict exactly the
same scene. However, there are important differences between
the three types of illumination, and especially between the
uniformly well-exposed image and the image under non-
uniform illumination.
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Figure 1. The extracted SIFT keypoints and their total number, for
various threshold values, in a scene captured under three different
kinds of illumination.

The differences are both in the location of the extracted
keypoints and in their total sum. In the case of the uniformly
well-exposed image, high threshold values (cases A and B)
result in the extraction of keypoints in all the regions of
the foreground. On the contrary, in the case that the image
is captured under non-uniform illumination, the extracted
keypoints are located only in the bright regions of the
foreground. No keypoints are extracted from the dark image
regions. Furthermore, the number of keypoints in the case of
non-uniform illumination is less than half, compared to the
uniformly well-exposed image. In order to extract keypoints
in the dark image regions, for the case of non-uniform
illumination, the threshold must be set to 25% (case C)
of its original value (case A). Still, in this case, the number
of keypoints located in the shadows is way less than that in
the well-exposed image. Any attempt to decrease the threshold
value even further (cases D and E) results in the extraction of
keypoints not corresponding to any surface properties but to
noise. Consequently, almost the whole image is covered by
keypoints. The case of dim uniform illumination exhibits an
intermediate state between the two extremes of bright uniform
and non-uniform illumination. More specifically, for threshold
cases A and B, the number of extracted keypoints, as well as
their locations, is similar to the bright uniform illumination.
This is in accordance with the fact that the local minima and
maxima in the scale-space are invariant with the magnitude
of contrast. However, as threshold values lower (cases D and

(a)

(b)

(d)

(c)

Figure 2. (a) A scene with two color checkers, under non-uniform
illumination; (b) a single scanline of the image scene, which crosses
the achromatic boxes, in both color checkers; (c) the output of the
DoG operator for the scanline; (d) the output of the nDoG operator
for the scanline.

E), the number and location of keypoints resemble the case of
non-uniform illumination.

A similar example is shown in figure 2, where a scene
with two color checkers, under non-uniform illumination, is
depicted (figure 2(a)), with one located within a strong shadow
and the other in a well-exposed image region. This image is
part of the high dynamic range workshop presented during
the last CREATE (Color Research for European Advanced
Technology Employment) meeting [8]. Figure 2(b) depicts a
single scanline of this image, which crosses the achromatic
set of boxes, for both color checkers, while figure 2(c) depicts
the output of the DoG operator for this specific scanline. It is
evident that the magnitude of gradient in the dark image region
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is significantly lower than the one in the well-exposed region.
In these cases, although the local extrema of the gradient will
be detected both in the dark and bright regions, it is difficult to
find a single global threshold that will result in the selection
of keypoints in the whole image. More importantly, since this
threshold has to be set quite low, in order to detect gradients
of low magnitude, it may result in the extraction of keypoints
that correspond to noise. The above examples demonstrate the
limitations of the classic scale-space regarding illumination
invariance. This can have a negative impact on vision systems
that operate under non-controlled illumination conditions. In
such cases, the captured images will inevitably suffer from
underexposed regions, preventing the extraction of keypoints
in these areas. As a result, object recognition, or any other
feature-based algorithm, will be impaired, thus, deteriorating
the performance of the whole system. Consequently, any
method or approach that gives a solution to this problem is
of significant importance to the computer vision community.

The first attempts in this direction introduced a new
vision framework for robust object recognition in cluttered
environments [4]. Existing techniques are based on appearance
features holding data with local estate. Algorithms of this
kind extract local features with local extent invariant with
possible illumination, viewpoint, rotation and scale changes
[9]. The two main sub-mechanisms of such frameworks are a
detector and a descriptor of the areas of interest. The main idea
underlying such a mechanism is that while the interest point
detector pursues points or regions in a scene containing data
that are salient within their local neighborhood, the descriptor
organizes the information collected from the detector in a
discriminating manner, so that the image is characterized
by a collection of high-dimensional feature vectors. One
of the first attempts for the determination of illumination-
invariant features has been proposed by Westhoff et al [10],
where the quantitative bilateral symmetry of an examined
scene is computed using dynamic programming and vertical
symmetry images are extracted using non-maxima suppression
and hysteresis thresholding. Tang et al [11] presented a novel
feature descriptor called ordinal spatial intensity distribution
that provided a great degree of invariance to any monotonically
increasing brightness. More recently, Yu et al [12] examined
the relationship of the relative view and illumination of
the images for better image matching. In the context of
illumination-invariant localization for indoor robots, Lee et al
utilized a twofold approach of orthogonal lines and local
descriptor-based point features [13]. Furthermore, the latest
attempts in the face recognition domain involved the use of
Haar local binary pattern features by [14] and neighboring
wavelet coefficients for great illumination invariance during
the extraction of local features [15].

The contribution of this paper is twofold. First, it
introduces a new DoG-based operator, inspired by the
center-surround cells of the human visual system (HVS),
which exhibits improved illumination invariant characteristics,
compared to classic DoG. This operator can be used for
the creation of an illumination invariant scale-space, which
can improve scale-space-based local detectors, like SIFT, by
increasing their robustness in various kinds of illumination

changes. More specifically, the proposed scale-space exhibits
improved response in the underexposed image regions and
exactly the same response, with the classic DoG-based scale-
space, for the well-exposed image regions. As a result, it
ensures that a single global threshold can extract keypoints
both in the shadows and in the bright areas, avoiding at the
same time the extraction of those corresponding to noise.
Additionally, the proposed scale-space is simple to implement
and incorporate in existing SIFT-based vision systems, thus,
enhancing their illumination invariance, especially for non-
uniform illumination conditions, while not affecting their
performance in bright uniform illumination. Consequently, it
can boost the performance of vision systems which operate in
non-controlled illumination environments.

The second contribution of this paper is a new dataset
specifically targeted to evaluate the illumination invariance
of vision systems. Unlike existing datasets, the proposed is
the only one featuring scenes under various degrees and
combinations of uniform and non-uniform illumination. As
a result, to the best of our knowledge, it constitutes the
only existing dataset that can provide clues on how the
performance of algorithms may vary according to different
illuminations and imaging conditions. The remainder of the
paper is organized as follows: section 2 briefly describes the
biological background upon which the proposed method is
based. Section 3 describes the proposed biologically inspired
scale-space. Section 4 presents the new benchmark database.
The experimental results are presented in section 5 and
concluding remarks are made in section 6.

2. Biological background

2.1. Biological center-surround operators

Neurophysiological studies have revealed that the receptive
fields of the retinal ganglion cells, as well as those of
other center-surround cells in the HVS, can be modeled as
DoG operators [16]. In contrast to the classic DoG operator
though, the center-surround cells of the HVS exhibit nonlinear
responses. Interestingly, the nonlinear response of ganglion
cells is thought to contribute to illumination invariance and
contrast enhancement [17]. According to the standard retinal
model [18, 19], the output Xi j of an ON-center OFF-surround
cell at grid position (i, j), obeying the membrane equations of
physiology, is given by

dXi j(t)

dt
= gleak(Xrest − Xi j) + Ci j(Eex − Xi j)

+ Si j(Einh − Xi j) (1)

with

Ci j =
∑

IpqGσC(i − p, j − q) (2)

Si j =
∑

IpqGσS(i − p, j − q) (3)

where gleak is a decay constant and I is a luminance distribution
(i.e. the image formed in the photoreceptor mosaic). Xrest (the
cell’s resting potential), Eex (excitatory reversal potential) and
Einh (inhibitory reversal potential) are constants related to
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the neurophysiology of the cell. GσC and GσS are Gaussians
representing the center and the surround of the cell’s receptive
field respectively, which are assumed to be normalized in order
to integrate to unity. The steady-state solution of equation (1)
is given by

Xi j,∞ = Ci jEex + Si jEinh

gleak + Ci j + Si j
. (4)

Equation (4) summarizes the difference between the nonlinear
DoG operator in biological vision and its linear counterpart
used in computer vision. When Eex = 1 and Einh = −1, which
is usually the case for center-surround cells, the numerator of
equation (4) is a standard linear DoG operator. However the
denominator consists of a sum of Gaussians (SoG) augmented
by the decay constant gleak. This acts as a multiplicative gain
control, where, with increasing activity of both center and
surround (i.e. with increasing luminance), the cell’s response
will decrease. On the other hand, under low luminance
conditions, the cell’s response increases, due to the low
activity of center and surround in the denominator. As a result,
center-surround cells in biological visual systems exhibit a
normalized response, invariant with different illumination
conditions. Since the Laplacian pyramid already has a
biologically-plausible DoG architecture, equation (4) can be
rewritten in a more compatible way in the classic scale-space,
by utilizing the adjacent scales of the Gaussian pyramid. We
call this operator normalized difference of Gaussians (nDoG):

nDoG(i, j, σ )

=
⎧⎨
⎩

L(i, j, κσ ) − L(i, j, σ )

L(i, j, κσ ) + L(i, j, σ )
, if L(i, j, κσ )+L(i, j, σ ) �= 0

0, else

(5)

with

L(i, j, κσ ) = G(i, j, κσ ) ∗ I(i, j) = Si j

L(i, j, σ ) = G(i, j, σ ) ∗ I(i, j) = Ci j,

where I is the input image, G is the Gaussian function, L is
the blurred image resulting from the convolution of I and
G, (i, j) are the spatial coordinates, κ is a multiplicative
factor that determines the different levels of blurring between
adjacent scales and σ is the standard deviation of the Gaussian.
L(i, j, κσ ) and L(i, j, σ ) can be thought of as the surround Si j

and the center Ci j, respectively, of a center-surround receptive
field of the HVS. In the rest of the paper we will use the notation
of center C and surround S to denote the fine L(i, j, σ ) and
coarse L(i, j, κσ ) adjacent scales, respectively, in a Gaussian
pyramid.

2.2. Comparison between DoG and nDoG

Figure 2(d) depicts the response of the nDoG operator for the
scanline of figure 2(b). The main difference between the classic
DoG operator and nDoG is clearly evident when comparing
figure 2(c) with figure 2(d). More specifically, the nDoG
operator exhibits an increased response in the underexposed

Figure 3. The graph of function f (nDoG), for various values of A,
in comparison to function g(DoG).

image region, by almost a factor of 15, compared to the DoG,
and an almost identical response to DoG for the well-exposed
region. As a result, the nDoG operator is more invariant to local
illumination changes. The main reason for this discrepancy
between the two operators is evident in equations (6) and (7),
which define them as a function of local contrast differences
S − C:

nDoG = S − C

S + C
= S − C

S + C − C + C
= S − C

S − C + 2C
= x

x + 2C

= x

x + A
= f (x) (6)

and

DoG = S − C

B
= x

B
= g(x) (7)

with S representing the surround, C the center, B the maximum
value that S or C may take and x = S − C is the local contrast
difference. nDoG exhibits a nonlinear response to x, adjusted
by parameter A and described by function f . This function
is a form of the Naka–Rushton function [20], which has
been identified in many vision-related cell types and has been
associated with the enhancement of contrast sensitivity in the
HVS [21]. On the other hand, DoG has a linear response to x,
described by function g. Figure 3 depicts the graph of function
f , for various values of A, in comparison to function g. It is
evident that for small values of A, f exhibits a steeper nonlinear
response. This nonlinearity ensures that even low input values
x will result in high output responses f (x). In contrast, since
function g is linear, low input values x will result in low output
responses g(x). This essentially means that the nDoG operator
has an increased response to lower local contrast, which is the
case for underexposed image regions.

Although nDoG may exhibit an improved response to
shadows, compared to DoG, it presents an important drawback
that prevents its direct use for the creation of a scale-space, i.e.
it does not exhibit a constant maximum output. This is clearly
depicted in figure 3, in which, f max fluctuates according to
the parameter A. This is more evident for high local contrast
values, near the maximum value B. In practice, this essentially
means that for bright image regions, nDoG will exhibit a lower
response, compared to DoG. Consequently, the same threshold
will result in the extraction of fewer keypoints for nDoG.
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Figure 4. The location and number of extracted keypoints for nDoG
and DoG, in a scene captured with different exposures.

Figure 4 depicts the location and the number of extracted
keypoints (always using the same threshold) for both nDoG
and DoG, in a scene captured with different exposures. In
the overexposed image, the number of extracted keypoints for
DoG is approximately double, compared to nDoG. This is a
direct result of the decreased output of the former in bright
image regions. As exposure decreases though, so does the
number of extracted keypoints for DoG. Consequently, in the
case of the underexposed image, DoG results in approximately
five times fewer keypoints, compared to the overexposed
image. In contrast to DoG, nDoG exhibits the opposite
behavior; as exposure decreases, the number of extracted
keypoints increases. As a result, in the underexposed image,
nDoG results in approximately five times more keypoints,
compared to the overexposed one. This example demonstrates
the complementary characteristics of these operators and
implies that a combination of the two could result in more
robust behavior in terms of illumination invariance.

3. Proposed operator and scale-space

According to the SIFT algorithm, a threshold is used to discard
scale-space local extrema, caused by low gradient magnitude,
since most of the time these points correspond to noise and not
to surface properties. This approach, however, may result in
sacrificing the extraction of keypoints in dark image regions,
and thus, impair the performance of vision systems operating
in non-controlled illumination conditions. In order to avoid this
unwanted behavior, the proposed method attempts to meet the
following two requirements.

(a) (b)

(c) (d)

Figure 5. (a) The three-dimensional graph of the nDoG operator;
(b) the three-dimensional graph of the DoG operator; (c) the
three-dimensional graph of the difference nDoG − DoG; (d) the
two-dimensional projection of the difference nDoG − DoG on the
center-surround plane.

• Improve the response of the DoG operator in the
underexposed regions, in order to extract keypoints that
correspond to surface properties and not noise.

• Maintain exactly the same response with DoG in the
correctly exposed and overexposed regions.

The first requirement ensures that there will be no sacrifice
of extracted keypoints in shadows, while trying to avoid the
extraction of noise-related features. The second requirement
ensures that no performance changes will take place in existing
systems that rely on the extraction of features based on the
DoG scale-space. These two requirements essentially indicate
that the improvement should be specifically targeted only
at underexposed regions, without affecting the already good
performance of DoG in all the other parts of the image.

In order to achieve this objective, we combine DoG and
nDoG into one piecewise function that will selectively use
one of the two operators in the appropriate cases. To further
investigate the properties of the two operators and define the
cases in which each one could be used, the three-dimensional
graphs of nDoG and DoG are depicted in figures 5(a) and
(b), respectively. These graphs essentially plot all the outputs
for every possible combination of a center C and a surround
S within the interval [0, B]. An apparent difference between
the two graphs is when the center and the surround comprise
small values near 0. This is the case of underexposed image
regions, and as shown previously, nDoG exhibits a strong
nonlinear response, compared to the linear one of DoG.
Another, not so obvious, difference between the two graphs
is when the center or the surround have values near B.
This is the case of bright image regions, in which DoG
was found to exhibit better behavior compared to nDoG. In
order to illustrate more clearly the dissimilarities between
nDoG and DoG, the three-dimensional representation of their

5



Meas. Sci. Technol. 24 (2013) 074024 V Vonikakis et al

output differences (nDoG − DoG) is depicted in figure 5(c).
Additionally, figure 5(d) depicts the center-surround plane of
figure 5(c).

From these two graphs, as well as equations (6) and (7),
it is evident that the two operators have identical outputs only
when C = S(DoG = nDoG = 0) and C + S = B (DoG =
nDoG = (S − C)/B). These two cases define two lines which
divide the center-surround plane shown in figure 5(d) into four
quadrants; Q1, Q2, Q3 and Q4, respectively. In every one of
these quadrants, the output of one operator is always greater
than the other.

Q1 is defined as (C > S) ∩ (C + S > B). In this case we
have

S − C < 0
S + C > B

}
⇒ S − C

S + C
>

S − C

B
⇒ nDoG > DoG.

(8)

Similarly, Q2 is defined as (C > S) ∩ (C + S < B) and in this
case

S − C < 0
S + C > B

}
⇒ S − C

S + C
<

S − C

B
⇒ nDoG < DoG.

(9)

Q3 is defined as (C < S) ∩ (C + S < B) and

S − C > 0
S + C < B

}
⇒ S − C

S + C
>

S − C

B
⇒ nDoG > DoG.

(10)

Finally, Q4 is defined as (C < S) ∩ (C + S > B) and

S − C > 0
S + C > B

}
⇒ S − C

S + C
<

S − C

B
⇒ nDoG < DoG.

(11)

Taking into consideration the requirements mentioned above,
it is obvious that we have to differentiate between dark and
bright image regions. A straightforward way is to use the sum
of C and S as an indicator. As is evident from figure 5(d), the
line C + S = B divides all the possible values into two sets:
Q1 ∪ Q4, in which C + S > B and thus (C + S) ∈ (B, 2B],
and Q2 ∪ Q3, in which C + S < B and thus (C + S) ∈ (0, B).
Sum values in the interval (0, B) can be considered to result
from dark image regions, since both center and surround have
low values in these regions. On the other hand, sum values in
the interval (B, 2B] result from bright image regions, since
center and surround have higher values. Using this as an
indicator for bright and dark image regions, we incorporate
these requirements into the following piecewise function:

iiDoG =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nDoG :
S − C

S + C
if C + S < B

0 if C = S = 0

DoG :
S − C

B
if C + S > B,

(12)

where iiDoG is the proposed illumination invariant DoG
operator. Interestingly, one can reach the same result using
a whole different approach for combining nDoG and DoG.
Since SIFT uses a global threshold to discard keypoints of
low gradient magnitude, it is valid to assume that always
selecting the response of the operator with the higher absolute
output will usually result in the extraction of greater number of

Figure 6. The three-dimensional graph of the proposed iiDoG
operator.

keypoints. In order to achieve this behavior, one has to select
the maximum value between DoG and nDoG, when both are
positive and the minimum value when both are negative. Since
the two operators have the same numerator (S−C), and their
denominators are always positive non-negative values, they
will always have the same sign. Additionally, the lineC−S = 0
is the boundary in which the sign changes either to positive or to
negative. This line divides all the possible values into two sets:
Q1 ∪ Q2, in which both nDoG and DoG are negative, because
C > S, and Q3 ∪ Q4, where both are positive, since S > C.
Consequently, one should select the operator with the smaller
output in quadrants Q1 and Q2 (Q1 : DoG, Q2 : nDoG) and
the operator with the greater output in quadrants Q3 and Q4
(Q3 : nDoG, Q4 : DoG). This is summarized in the following
equation:

iiDoG =
⎧⎨
⎩

min[nDoG, DoG] if S − C < 0
0 if C = S = 0
max[nDoG, DoG] if S − C > 0.

(13)

Equation (13) can also be rewritten as

iiDoG = max[[DoG]+, [nDoG]+] + min[[DoG]−, [nDoG]−]

(14)

with [·]+ = max[·, 0] and [·]− = min[·, 0]−. In
particular, equation (14) is more appropriate for array-based
implementations, like in Matlab, since, once the DoG and
nDoG output arrays have been computed, it provides the final
result using simple max/min operations between them.

Equations (12)–(14) are all equivalent and their three-
dimensional graph is depicted in figure 6, which essentially
is a combination of figures 5(a) and (b). The iiDoG operator
combines the strengths of DoG and nDoG, while avoiding
at the same time their drawbacks. More specifically, iiDoG
exhibits the illumination invariance characteristics of nDoG,
in the underexposed image regions, while maintaining the
already good performance of DoG in the bright image regions.
Figure 7 depicts the proposed scale-space, employing the
iiDoG operator. The main advantage of the proposed approach
is that using the global threshold of SIFT’s detector, keypoints
can be extracted both in the correctly exposed image regions
and in the shadows. More importantly, the improvement
strictly targets the underexposed image regions, with no
departures from the performance of classic SIFT in the bright
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Figure 7. The proposed scale-space, based on the iiDoG operator.

Figure 8. Comparison of the proposed iiDoG with automatic gain
control methods.

and well-exposed areas. Taking also into account the fact that
the implementation of the proposed scale-space is very simple,
it can be used for improving the illumination invariance of
SIFT-based vision systems.

The proposed approach could be seen as a spatial
automatic gain control (AGC) method. Apart from the
computer vision and image processing domain, AGC
techniques have been proposed in other disciplines as well,
such as geophysics, in order to balance different kinds of
signals, e.g. aeromagnetic data. Two notable methods in
this context are [22] and the Theta map [23], with the
former presenting better results than the latter. Figure 8
depicts a comparison between the proposed iiDoG, DoG
and DoG+manual gain methods along with one proposed by
Cooper, for the scanline of figure 2. For the DoG+manual gain
method, a gain of ×20 was applied only to the underexposed
image region. Compared to this, the proposed method exhibits
an almost equal amplification of the original DoG signal, in
the underexposed region, while keeping it untouched in the
correctly exposed. More importantly though, there is lower
enhancement of noise in the underexposed region. This is
not the case however with Cooper’s approach. When the

amplification of the underexposed region is significant (k =
0.001, k = 0.0001) there is also considerable enhancement of
noise. Consequently, this will result in the extraction of many
noisy feature points by the SIFT detector. Additionally, the
signal in the correctly exposed image region is affected, and
consequently, this would change the performance of a SIFT-
based system, if the method presented in [22] were used as an
AGC. Finally, this method is based on the Hilbert transform,
and, as a result, every level of the Gaussian pyramid should
be transferred to the frequency domain. This inevitably would
increase the computational cost. In contrast, this is not the
case for the proposed method, since it is applied directly to the
spatial domain.

4. Phos benchmark image database

In order to test the proposed approach, a new benchmark
database has been constructed, aiming to evaluate the
performance characteristics of feature detectors under various
illumination conditions. The name of the proposed image
database is Phos, which in Greek means light. Existing datasets
focus on different viewpoints, rotation and zooming of the
scenes [24], in order to test the invariance of systems in
these categories. Very little attention is given, though, to the
actual illumination conditions, which may exist outdoors. The
vast majority of previously presented benchmarks, regarding
illumination invariance, are done by manually adjusting image
brightness with image processing software. One significant
exception is the Leuven sequence presented by Mikolajcyk
and Schmid [25] where the illumination changes occurred due
to the adjustment of the camera’s aperture. This approach,
however, is far from realistic. The algorithm that adjusts the
brightness in image processing software does not necessarily
exhibit the same results as those resulting from the exposure
of a camera under real conditions.

More importantly, as the comparison in figure 1 shows,
underexposed image regions tend to have lower signal-
to-noise ratio, making it difficult to distinguish between
keypoints corresponding to surface properties and keypoints
corresponding to noise. Consequently, taking a well-exposed
image, with an overall good signal-to-noise ratio, and manually
lowering its brightness, will not have the same effect as
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Figure 9. One scene from the proposed Phos dataset.

if the same scene were captured under lower illumination
conditions. Furthermore, illumination in outdoor scenes is
usually non-uniform. Multiple light sources, shadows and high
dynamic range imaging conditions may dramatically affect the
quality of captured images. As a result, any camera system
functioning outdoors will inevitably exhibit a performance
reduction due to the above reasons. Undoubtedly, it is very
important to measure this reduction. However, currently, there
are no benchmark image databases which can be used for
evaluating the performance of algorithms under more realistic
lighting conditions.

The main objective of the new image database is to fill
this gap in the existing benchmark databases, by specializing
under realistic illumination conditions. More particularly,
every one of the 15 scenes of the database contains 15
different images: 9 images captured under various strengths
of uniform illumination, and 6 images under different degrees
of non-uniform illumination. The images contain objects of
different shapes, colors and textures. Moreover, the objects
are positioned in random locations inside the scene. Figure 9
depicts one scene from the new image database. The Phos
database is publicly available at [26].

Uniform illumination (first row of figure 9) is achieved
using multiple diffusive light sources, evenly distributed
around the objects, and a Lambertian white background.
The different strengths of uniform illumination are captured
by adjusting the exposure of the camera between −4 and
+4 stops from the original correctly exposed image. Thus,
for every scene four underexposed and four overexposed
images with uniform illumination were captured. Non-uniform
illumination (second row of figure 9) is accomplished by
adding a strong directional light source to the diffusive
lights located around the objects. By adjusting the strength
of the diffusive lights, six different mixtures of uniform
and non-uniform illumination were created, ranging from
both directional and uniform illumination to directional
illumination only. This set of images is particularly challenging
for feature detectors due to high dynamic range conditions. It
contains strong shadows, which deteriorate the performance
of local feature detectors. The strength of the Phos dataset lies
in the fact that the induced shadows (uniform or non-uniform)
are created incrementally. This offers the unique opportunity
to study how the performance of feature detectors varies as the
degree of shadows increases.

5. Experimental results

In this section, the experimental results of the performance
of the proposed detector are presented and discussed. The
performance of the new modified detector is compared with
other widely used detectors for illumination and photometric
variations in the proposed image database Phos and in the
Leuven sequence presented in [25] and provided in [27].

5.1. Evaluation criterion

The criterion used to evaluate a feature detector is the
repeatability score the detector achieves between a given
pair of images. More precisely this is the ratio between the
number of region-to-region correspondences and the smaller
number of regions detected in one of the images [28]. The
evaluation procedure is similar to [29], which encompasses
only the features located in the part of the scene appearing in
both images under comparison, to be taken into consideration.
First, the homography between the pair of images is estimated,
in order to calculate the ground truth measurement of the
possible transformation. Given the estimated homography,
the projected position of features and the corresponding
regions of the two images are calculated and the amount of
overlap is verified. The overlap error between corresponding
regions is the ratio (1 − intersection/union) of the elliptic
regions and it is analytically computed using the ground truth
transformation. The repeatability score depends on the overlap
error. Therefore, in order to be evaluated, different overlap
errors are computed as well.

5.2. Test data and results

The proposed iiDoG operator is used for the creation of a scale-
space. This scale-space is integrated in a SIFT-based detector,
using exactly the same parameters (threshold, scales, etc) as
the classic SIFT detector. In order to test the performance of the
proposed detector, three major experiments were conducted.
The first one was conducted using the proposed image
database, Phos, in order to test the illumination invariance
of the proposed detector, compared to the performance of
others. The algorithms used for the testing were the maximally
stable extremal region (mser) detector [30], the Harris-affine
(har-aff) [31], the Hessian-affine (hesaff) [31], the intensity
extrema-based region detector (ibr) [29], the edge-based
region detector (ebr) [32], the original SIFT detector [4] and
the detector module of SURF [9]. All these detectors were

8
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(a)

(b)

(c)

Figure 10. Evaluation of the proposed detector for various kinds of uniform illumination in the Phos dataset: (a) repeatability score for
decreasing light; (b) repeatability score for increasing overlap error; (c) number of corresponding regions in the images.

tested, along with the proposed, for repeatability, overlap error
and the number of correspondences.

Figure 10 depicts the evaluation of the iiDoG detector for
the case of uniform illumination in the Phos dataset (first row

of figure 9). The correctly exposed image was used as reference
and each of the others (+4,+3,+2,+1,−1,−2,−3,−4)

as subjects for comparison. The results of this experiment
clearly demonstrate that the proposed detector outperforms
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(a)

(b)

(c)

Figure 11. Evaluation of the proposed detector for various degrees
of non-uniform illumination in the Phos dataset: (a) repeatability
score for decreasing light; (b) repeatability score for increasing
overlap error; (c) number of corresponding regions in the images.

all the other detectors in repeatability, as the exposure varies
(figure 10(a)), and when the overlap error becomes larger
(figure 10(b)). Additionally, the proposed detector exhibits the
higher number of corresponding regions in five out of the total
eight cases (figure 10(c)). More importantly, in cases where

(a)

(b)

(c)

Figure 12. Evaluation of the proposed detector for the Leuven
sequence: (a) repeatability score for decreasing light; (b)
repeatability score for increasing overlap error; (c) number of
corresponding regions in the images.

the iiDoG is not first, it is only marginally outperformed by
other detectors, ranked second among all the others.

Figure 11 depicts the performance of the tested algorithms
for various degrees of non-uniform illumination in the same
scene (second row of figure 9). Similar to the case of
uniform illumination, the proposed iiDoG operator and its
resulting detector clearly outperform all the other methods
in repeatability, both when the strength of the illumination
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Figure 13. Number of detected keypoints between iiDoG and the detector module of SIFT for various threshold values.

Figure 14. Number of correct positive matches between iiDoG and the detector module of SIFT, for various threshold values.

varies (figure 11(a)) and when the overlap error becomes larger
(figure 11(b)). Additionally, the proposed detector exhibits
the higher number of corresponding regions in all the test
cases. More importantly, in this category, the iiDoG detector
outperforms the second one (SURF) by a factor ranging
from 1.6 (first case, uniform and directional illumination)
to 3 (last case, purely directional illumination). This
clearly demonstrates the improved illumination invariance
characteristics of the proposed method, especially for the
difficult cases of non-uniform illumination.

In order to provide indirect comparison with other
detectors that were not tested in our previous experiment, and at
the same time have a reference point regarding the performance
of the proposed algorithm, the widely known Leuven dataset
was also used, consisting of several photographs of a parking

lot captured under different illumination conditions [27].
Figure 12 depicts the respective graphs for this dataset.
Similarly to the case of the Phos dataset, the proposed detector
outperforms all the others, for the cases of repeatability
(figure 12(a)), overlap error (figure 12(b)) and number of
correspondences (figure 12(c)).

Since the main thrust of the proposed method is to
locally equalize the gradient magnitude, in order to facilitate
the thresholding of the extracted keypoints, one could argue
that altering the threshold of the classic SIFT detector
could result in similar results. For this reason, we tested
the detector performance of iiDoG and the classic SIFT,
for various threshold values. The most challenging image
(the one captured under only directional illumination, lower
right of figure 9) was compared to the correctly exposed
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Figure 15. Comparison of matching points between a DoG-based
SIFT and the proposed ii-DoG-based SIFT.

one (upper middle of figure 9). After feature extraction by
both detectors, a matching procedure took place where the
number of correct positive correspondences was measured.
The feature extraction process was repeated for ten threshold
values ranging from 0.01 to 0.3. The number of detected
key points of iiDoG and SIFT, during these threshold
variations, is shown in figure 13, while the number of
correct positive matches is illustrated in figure 14. The
most interesting observation is the similar gradients of the
lines both in key point detection and matching. Apparently,
iiDoG demonstrates better performance than the original SIFT
module for any threshold value. More importantly, for lower
threshold values, the proposed detector exhibits double the
number of correct matches, compared to SIFT. This increase
in performance is a direct consequence of the fact that
the proposed method detects keypoints also in the dark image
regions, whereas SIFT does not. As a result, the number
of correct matches, in the difficult case of non-uniform
illumination with many underexposed image regions, is always
higher for the iiDoG detector.

Figure 15 depicts the extracted matching points of a
DoG-based SIFT algorithm and an iiDoG-based one, when
applied to the same scene under uniform bright and non-
uniform illumination. The results are depicted for different
values of detector thresholds. In all cases, the proposed method
exhibits greater number of matching points. Furthermore,
the total number of matches remains more constant as the
threshold value decreases. Finally, the DoG-based SIFT is
more susceptible to wrong matches (lines which are not
horizontal) compared to the proposed one.

6. Conclusions

This paper introduced a new operator combining the nonlinear
responses of center-surround cells of the HVS, as well as the
reliability of the classic DoG. As a result, this new operator,
iiDoG, exhibits increased output response in the underexposed

image regions and the DoG response in any other case. The
operator can be used to create a scale-space, which in turn can
be a part of a SIFT-based detector module. The main advantage
of this detector is the local equalization that the iiDoG operator
introduces to the magnitude of gradient, according to which,
contrast differences are boosted in the underexposed image
regions, while kept intact in all other cases. Consequently, one
global threshold can result in the extraction of keypoints, both
in the dark and bright image regions.

Experimental results in different kinds and degrees
of illumination demonstrated that the proposed approach
outperforms existing detectors and exhibits constantly better
results, especially in the difficult cases of uneven and non-
uniform illumination. These kinds of illumination conditions
are quite usual in outdoor environments and can pose a
considerable challenge to vision systems. Therefore, the
increased illumination invariance of the proposed detector
may be a solution to this problem. Additionally, the
proposed method can be easily implemented, without requiring
significant changes in the structure of existing SIFT-based
systems. Finally, the fact that the output of the proposed
detector is exactly the same as DoG, for the cases of
well-exposed image regions, ensures that the improvements
introduced will only be targeted in shadows. Thus, no
unpredictable or unwanted changes in performance will occur
for the cases of correctly exposed images.
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