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Abstract—This paper presents a new comparison framework,
with the view to help researchers in selecting the most appropriate
illumination compensation algorithm to serve as a preprocessing
step in computer vision applications. The main objective of this
framework is to reveal the positive and negative characteristics
of the algorithms, rather than providing a single metric to rank
their overall performance. The comparison tests, that comprise
the proposed framework, aim to quantitatively evaluate the
efficiency of algorithms in diminishing the effects of illumination
in images. The proposed framework utilizes synthetic images,
with artificial illumination degradations, which are enhanced by
the tested algorithms. It represents a useful tool for the selection
of illumination compensation algorithms as preprocessing in
other applications, due to a) its quantitative nature, b) its easy
implementation and c) its useful estimations regarding many
algorithm characteristics.

I. INTRODUCTION

Illumination is among the most important factors affecting
the performance of the majority of computer vision algorithms.
Underexposed or overexposed image regions caused by non-
uniform illumination may pose a significant challenge to
computer vision algorithms, since any image characteristic,
such as edges, colors or local features, become a lot harder
to detect. To overcome the above illumination problems, a
typical approach is the use of a preprocessing illumination
compensation technique, which can minimize the effects of
under/overexposed image regions on the captured images.

Several algorithms which can compensate for the effects
of illumination have been presented in the literature, coming
from many different disciplines. Although they may have
totally different objectives, such as the enhancement of im-
ages, the estimation of the appearance of scenes (biological
vision) or the decomposition of images into illumination and
reflectance (intrinsic images), their illumination compensation
characteristics, have established them as part of many imaging
or computer vision applications, such as, image retrieval [1],
stereo [2], shadow removal [3], real-time video enhancement
[4], the correspondence problem [5] and eye detection [6].
This diversity, has given rise to an interesting problem; how to
choose the most appropriate algorithm, among many different
types (e.g. image enhancement, illumination decomposition,
appearance estimation etc.) to be used as a preprocessing step
in a particular imaging or computer vision application.

Image enhancement algorithms, are usually evaluated by
three major approaches: visual inspection, psychophysical ex-

periments and image quality metrics (IQM). Visual inspection
is, by its nature, subjective and difficult to draw accurate
conclusions about the individual characteristics of the al-
gorithms. Psychophysical experiments are studies in which
human observers are asked to quantitatively evaluate specific
characteristics of the enhanced images, such as contrast, bright-
ness, naturalness, colorfulness etc., or to rank the results of a
number of enhancement algorithms [7]. Although it delivers
quantitative results, this approach still remains subjective to a
certain degree and difficult to reproduce. IQM are measures
used for the evaluation of perceived characteristics of imaging
systems or of image processing techniques [8]. Generally,
IQMs usually calculate particular image characteristics (e.g.
brightness, contrast, colorfulness etc.) or predict the distor-
tion introduced into the image by processing algorithms.
Intrinsic image algorithms attempt to decompose the image
into reflectance, illumination and specularities [9]. Benchmark
datasets, providing ground truth for many different objects [10]
have been used for their evaluation. Finally, scene appearance
algorithms attempt to compute the appearance of a scene, as
it would have been perceived by a human observer [11]. Their
evaluation is more complex and usually requires psychophys-
ical experiments [12].

All the above evaluation approaches are designed for a
specific type of algorithm. Yet, they give little insight regarding
the algorithms’ potential as preprocessing, since the attributes
which are important for this task may be different from the
original objective of the algorithm. For example, an image
enhancement technique may not exhibit good quality of results,
in terms of naturalness or contrast, but at the same time, it may
still be good for diminishing the effects of shadows and thus
be appropriate for preprocessing in another system.

This paper attempts to resolve this issue. It proposes a
new comparison framework which estimates certain charac-
teristics of illumination compensation algorithms, regardless
of the field from which they are coming, important for their
success as preprocessing in other vision systems. It should be
clarified that the aesthetic evaluation of enhancement results
or psychophysics is out of the scope of this paper. For this
reason, it does not make use of observers or psychophysi-
cally derived IQMs. The primary objective is the estimation
of the preprocessing potential of illumination compensation
algorithms to other applications, in an easily reproducible way.
More specifically, the proposed framework does not attempt to
rank algorithms according to a single statistical measure, but it
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Fig. 1. The Lena image and its exposure characteristics.

rather aims to reveal their positive and negative characteristics,
in various performance categories. As such, it attempts to
answer specific questions like “What is the maximum shadow
strength that algorithm X can successfully handle?”, “Which
algorithm between X and Y is better in correcting overexposed
image regions?”, or “How good is algorithm X in preserving
the visual information in the correctly-exposed regions?”. This
type of information is essential for facilitating the selection
of an illumination compensation algorithm as preprocessing
in a particular imaging or computer vision application. The
proposed framework utilizes synthetic images with various
degrees of artificial illumination degradations; the synthetic im-
ages are enhanced by the evaluated algorithms and their results
provide strong indications about their overall performance.

The paper is organized as follows: Section 2 presents a
detailed description of the proposed comparison framework.
Section 3 gives an extensive example for the evaluation of
four illumination compensation algorithms, using the proposed
framework. Finally, concluding remarks and discussion are
presented in section 4.

II. COMPARISON FRAMEWORK

The proposed framework excludes psychophysics from the
evaluation of the enhanced images, and employs computer
generated test images, which can be easily used as benchmarks
by other researchers. A set of 40 specialized test images is
generated, comprising the most common illumination com-
binations that can be encountered in non-controlled envi-
ronments, i.e. uniform/non-uniform illumination and underex-
posed/overexposed image regions. Finally, a statistical analysis
is performed, concerning the enhancement performance of
tested algorithms on the set of these 40 test images.

A. Constructing the test images

The 40 test images are generated by applying artificial
degradations on an image, used as Ground Truth (GT). The
GT image can be any correctly exposed image of a scene,
under mostly uniform illumination, without underexposed or
overexposed regions. In our implementation of the framework,
the Lena image is selected as GT, since it is one of the most
widespread images in the field and includes a variety of surface
types, such as textured, curved or flat. More importantly
though, as Fig. 1 indicates, it has a very well balanced
histogram, with a mean value of 124.2, which is very close
to the middle of the scale (127.5). Additionally, there is no
clipping of visual information in the lower part (min=20) or the
upper part of the scale (max=245). All these are indications of
overall good exposure. Any image with similar characteristics
could, thus, be used as GT. For existing vision systems, well-
exposed images captured with the system’s camera could be

used as GT, incorporating the camera’s characteristics in the
GT image. Fig. 2(a) depicts the flow chart of the proposed
comparison framework.

The artificial degradations applied to the GT image, are
generated by approximating two kinds of illumination (uniform
and non-uniform), along with two kinds of degradations (un-
derexposed and overexposed regions). In the case of uniform
illumination, the degradations are applied to the whole GT
image, whereas, for non-uniform illumination, the degradations
are applied only to a specific part of it, leaving the other
part intact. Underexposure degradations are simulated using
the following equation, which is based on the multiplicative
relation between reflectance and illumination.

UEij = (1− ILij)×GTij (1)

where UE is the underexposed-degraded test image, IL is a
function that determines type of illumination at each spatial
position, and (i, j) are the pixel coordinates.

Similarly to the underexposed regions, overexposure degra-
dations are simulated using the following equation.

OEij = B − [(1− ILij)× (B −GTij)] (2)

where OE is the overexposed-degraded test image, B is the
maximum possible value of the GT image (usually 255), IL
is a function that determines the type of illumination and (i, j)
are the pixel coordinates.

For both underexposed and overexposed-degraded test
images, we have identified three types of illumination, as
indicated by the following equations.

ILconst
ij = ILmax (3)

ILstep
ij = u(j − imx

2
) · ILmax (4)

ILgrad
ij =

j

imx
· ILmax (5)

where ILconst corresponds to a uniform (constant) illumi-
nation, ILstep corresponds to a sharp illumination transition
(step) and ILgrad is an illumination gradient. ILmax is the
strength of illumination, with ILmax ∈ [0, 1], u(·) is the
unitary step function and imx is the width of the GT image.
When ILmax = 0, underexposed or overexposed image
regions disappear and the degraded test image is equal to
the GT image. When ILmax = 1, the degradation strength
is maximum, resulting to the complete loss of any visual
information. For all the intermediate values of ILmax, the
strength of the degradation varies linearly between these two
extremes.

In our implementation we focused on the uniform illumina-
tion of equation (3) and the non-uniform (step) illumination of
equation (4). We preferred the step illumination to the gradient
of equation (5) since the former poses a grater challenge for
illumination compensation algorithms, by triggering the ap-
pearance of possible halo artifacts in the region of the sharp il-
lumination transition. Thus, using the illumination of equation
(4) may expose these kind of limitations, which are important
to know. In order to test the results of algorithms in various
degrees of illumination, test images with 10 different un-
der/overexposure strengths are generated, for both uniform and
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Fig. 2. (a) The block diagram of the proposed framework; (b) A subset of the 40 proposed test images of the framework.

non-uniform illumination. This essentially means that param-
eter ILmax ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}.
Eventually, a set of 40 different test images (T1 − T40) is
generated, a subset of which is depicted in Fig. 2.

• T1 − T10: Uniform underexposure (ILconst).

• T11 − T20: Uniform overexposure (ILconst).

• T21 − T30: Non-uniform underexposure (ILstep).

• T31 − T40: Non-uniform overexposure (ILstep).

B. Performance metric

The 40 test images are tested one by one against the
GT image, in the way the flow chart of Fig. 1a depicts.
A theoretically perfect illumination compensation algorithm,
would output an image identical to the GT image. The
departure of the algorithm output from the GT image is
measured using normalized Root Mean Square Error, which
is the performance metric upon which, all the evaluations of
the proposed framework are based. The formula of this metric
is given in the following equation:

ms
k = 1− 1

B

√√√√√∑
i∈S

∑
j∈S

(
GTij − E (Tk)ij

)2
NS

(6)

∀(i, j) ∈ S = {SD, SND, SW }. mS
k is the performance metric

applied to the S region of test image Tk, taking values in the
interval [0, 1]. NS is the number of pixels belonging to region
S, B is the maximum possible value of the GT image (usually
255), E(Tk) is the test image Tk, enhanced by the evaluated
algorithm and (i, j) the pixel coordinates. Set S comprises
three different image regions, on which the performance metric
can be applied: SD, which is the degraded region of the image,
SND, which is the non-degraded region of the image and SW ,
which is the whole size of the image. According to equation
(6), the ‘theoretically perfect’ enhancement algorithm would
exhibit a value of mS

k = 1.

The final result of the proposed framework is a set of 6
different graphs that describe 6 corresponding performance
characteristics, as they change across different degrees of
illumination strength.

1) Improvement of uniformly underexposed regions (T1-
T10, SW ).

2) Improvement of uniformly overexposed regions (T11-
T20, SW ).

3) Improvement of non-uniformly underexposed regions
(T21-T30, SD).

4) Improvement of non-uniformly overexposed regions
(T31-T40, SD).

5) Preservation of intact regions for underexposure (T21-
T30, SND).

6) Preservation of intact regions for overexposure (T31-
T40, SND).

Cases 5 and 6 are very important since a particular al-
gorithm may perform very well in enhancing, for example,
the underexposed regions of an image, yet, it may also af-
fect negatively the correctly exposed ones. The latter is an
unwanted side-effect, as it lowers the quality of output images
and passes undetected when the metric is applied globally, to
the whole image size (SW ). Algorithms which can enhance
under/overexposed areas, without affecting the correct ones,
will exhibit better performance as preprocessing for other
applications. To our knowledge, no other comparison approach
has taken into consideration this attribute.

III. APPLYING THE FRAMEWORK

In order to demonstrate the proposed comparison frame-
work, four different illumination compensation algorithms
were evaluated. Vassilios Vonikakis (VV) algorithm [13] is
a center-surround image enhancement algorithm, based on the
Human Visual System. The Multi-Scale Retinex with Color
Restoration (MSRCR) [14] and Saponara Retinex (SR) [15]
are two different versions of the Retinex algorithm. Finally,
the Fused Logarithmic Transform (FLOG) is an improvement
of the classic logarithmic mapping, employing also a multi-
scale pyramid [16]. Fig. 3 depicts the results of the proposed
framework. These six graphs can give important insights
regarding an algorithms performance profile, highlighting its
strengths and weaknesses and thus, helping researchers to
assess its preprocessing potential for other applications.

The most prominent characteristic of the VV algorithm
is that it targets its enhancement specifically to the degraded
image regions, affecting minimally the correctly exposed ones.
This is evident in Fig. 3e and Fig. 3f, where VV clearly



Fig. 3. Results of the proposed framework.

outperforms all the other algorithms, exhibiting a mS
k score

of more than 0.95, approximately. This characteristic might be
important for both aesthetic reasons, as well as in many com-
puter vision applications, because it ensures the preservation
of visual information in the non-degraded regions. However,
such a good characteristic comes at a cost; the enhancement
of non-uniform underexposed regions is worst in most of the
cases, compared to the other algorithms (Fig. 3c). Apart from
that, VV is good in enhancing uniformly underexposed or
overexposed images with moderate degradation strength. This
is evident in Fig. 3a and Fig. 3b, where VV outperforms all
the other algorithms for underexposure strengths up to 0.8.
After that, its performance degrades rapidly, ending last for
very strong uniform underexposures. As a conclusion, the VV
algorithm exhibits moderate illumination compensation charac-
teristics, with its strongest point being the overall appearance
of the image, since it does not affect the correctly exposed
regions. When it comes to computer vision applications, VV
should be given preference only for moderate illumination
degradations.

MSRCR is not ranked first in any evaluation category,
although it exhibits the second best performance in most of
the cases. It is generally very good in enhancing any kind of
underexposure, both uniform and non-uniform (Fig. 3a, Fig.
3c). Concerning overexposure, MSRCR is a good candidate for
any illumination condition, since it also exhibits competitive
results in most of the cases (Fig. 3b, Fig. 3d). An important
feature is that the preservation of the correctly exposed image
regions is satisfactory for overexposure, but degrades rapidly
for underexposure cases (Fig. 3f and Fig. 3e respectively). As a
conclusion, MSRCR is an algorithm which can be used reliably
for illumination compensation, both for aesthetic correction of
images, as well as preprocessing for other algorithms.

Similarly to MSRCR, SR is not ranked first in any
evaluation category exhibiting, in general, a rather moderate
performance. In the case of uniform illumination, SR could
be a good choice of enhancement algorithm, due to the high

predictability of its results; it exhibits an almost constant
output of approximately 0.86 for any degree of uniform
under/overexposure (Fig. 3a, Fig. 3b). However, when illu-
mination is non-uniform, its performance drops steadily (Fig.
3c, Fig. 3d). In such illumination conditions, it exhibits good
enhancement of moderately underexposed regions, very low
enhancement of overexposed ones, while the preservation of
the correctly exposed image regions is not its strongest point.
Similarly to MSRCR, SR exhibits a potential for both aesthetic
and preprocessing use.

FLOG is an algorithm which exhibits a superior perfor-
mance in enhancing strong underexposure under non-uniform
illumination conditions (Fig. 3c). However, this attribute comes
at a cost, since, at the same time it also affects the correctly
exposed regions; it exhibits the worst performance in most of
the cases in Fig. 3e and Fig. 3f. In this sense, FLOG exhibits
an opposite performance compared to VV, which preserves
almost perfectly the correctly exposed regions, at the expense
of underexposure enhancement. Additionally, FLOG is not to
be recommended for enhancing overexposed regions under
non-uniform illumination conditions (Fig. 3d). Similarly, its
performance is the worst, in most of the cases of uniform
illumination (Fig. 3a, Fig. 3b). For these reasons, FLOG should
be given preference mostly in preprocessing for severe shadow
cases, rather than in the aesthetic enhancement of images.

IV. CONCLUSION

A new comparison framework for the evaluation of illumi-
nation compensation algorithms is presented in this paper. It
utilizes computer generated synthetic images, with artificial il-
lumination degradations of various degrees. The improvements
introduced by algorithms, when applied to the test images, are
used to create graphs for 6 performance attributes (improve-
ment of under/overexposure, both in uniform and non-uniform
cases, along with the ability to preserve information in the
intact image regions). These attributes give strong indications
about the algorithms positive and negative characteristics and



their preprocessing potential in other algorithms or vision sys-
tems. Consequently, the contribution of this paper is twofold;
first, the proposed framework represents a benchmarking tool
for evaluating illumination compensation algorithms, high-
lighting their important characteristics and second, it provides
credence to their suitability for preprocessing in computer
vision applications.
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