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Abstract—In order to adequately accomplish vision-based ma-
nipulation tasks, robotic platforms require an accurate estimation
of the 3D pose of the target, which is efficiently approached
by imaging techniques excessively utilizing large databases that
consist of images of several objects captured under varying
viewpoints. However, such approaches are characterized by large
computational burden and complexity accompanied by limited
capacities to interpolate between two known instances of an
object. To address these issues we propose a robust 3D object pose
estimation technique that entails a manifold modeling procedure
based on appearance, geometrical and shape attributes of objects.
We utilize a bunch-based method that is followed by a shape
descriptor module, in order to establish low dimensional pose
manifolds capable of distinguishing similar poses of different
objects into the corresponding classes. Finally, an accurate
estimation of the 3D pose of a target is provided by a neural
network-based solution that encompasses a novel input-output
space targeting method. We have comparatively studied the
performance of our method against other related works, whilst
experimental results justify our theoretical claims and provide
evidence of low generalization error.

I. INTRODUCTION

Recent research endeavors in the field of robotics and
mechatronics were dedicated to the designing and implemen-
tation of advanced robotic platforms that aim at minimizing
user’s effort. Towards this end, new generation frameworks are
primarily equipped with advanced visual sensors that enable
the autonomous grasping of objects in the working envelope
of the robot. Object manipulation stands for the most widely
realized operation of a human being since it is directly linked
to several vital tasks, i.e. eating or drinking. According to the
literature, manipulation frameworks could be categorized into
four major sub-classes depending on simplicity, reliability and
versatility levels of the corresponding frameworks. The first
category represents mechatronics schemes, referred as work-
stations, which depend upon position-based grasping modules
that are mainly comprised of a robotic arm fixed to a desk
[1], [2], [3], [4]. The main attribute characterizing the systems
belonging to the second category is the introduction of sensors’
feedback. Additionally, stand alone manipulators are usually
lighter than workstations, whilst the total knowledge of their
working environment does not constitute a prerequisite [5], [6].
Wheel chair mounted frameworks that correspond to systems
associated with the third sub-category, emphasize in increasing
the working space of the robotic arm by mounting the latter
on a moving particle [7], [8], [9]. In the last category the
most advanced assistive robots [10], [11] are assorted, which
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Fig. 1. In this figure the main idea underlying the proposed method is
shown. The part-based architecture is built through the processes of key-point
extraction 1(a) and a clustering procedure 1(b). Each member of the proposed
bunch-based structure encapsulates both appearance and geometrical attributes
of the object. The next phase encompasses the process of the shape extraction
1(c). The establishment of the manifold is adequately accomplished through
the calculation of the distance of each of these clusters with a given one 1(d).
As a final step, several manifolds representing numerous training objects are
considered as input to a neural network-based framework that is simulated in
order to estimate the 3D pose of the object to be given as an input to the
manipulator.

are primarily comprising of a robotic arm mounted onto an
autonomously moving vehicle equipped with either laser [12],
[13] or visual [14], [15] sensors.

Visual servoing, which has been widely used to solve for
the object manipulation problem, incorporates among others
a kind of 3D object pose estimation task. The latter stands
for one of the most challenging problems in computer vision,
mainly due to its practical caliber and its ability to be adopted
into a plethora of various applications. Generally, a 3D pose
estimation algorithm embodies sophisticated routines that aim
at pledging vital visual information regarding the geometri-
cal configuration of an object-target [16], [17], [18], [19],
[20], [21]. In its most general form, the 3D pose estimation
problem is solved by the efficient exploitation of trained
databases that imply efficient solution to the 2D-2D image
feature correspondence problem. However, such approaches
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are characterized by high complexity accompanied by large
computational burden.

In this paper we propose a visual servoing approach, which
is based on a manifold modeling module, and that it could be
easily adopted by any advanced mechatronics platform. The
proposed manifold building process is based on the intuition
that similar poses of different objects captured under identical
viewpoints share akin manifolds. The latter are established
through an advanced process that comprises of a part-based
structure enclosing both appearance and geometrical attributes
of the trained objects. One could say that the manifold of
the 3D model of an object in a known training instance is
governed by the distances of the members of the bunch-based
architecture from one particular center as shown in Fig. I.
An accurate estimation of the 3D pose of a testing object
is obtained through the simulation of a neural network that
is trained with several available datasets. The obtained 3D
object pose estimation is given as an input to the gripper
in order to adequately fulfill object manipulation tasks. The
contribution of this paper, among others, entails the formal-
ization of this novel manifold modeling that avoids the use of
conventional dimensionality reduction techniques widely used
in computer vision and robotics applications. Additionally, the
proposed part-based implementation is capable of pledging
both appearance and geometrical attributes of the objects.
Moreover, the extracted manifolds are of low dimensionality,
which in turn, avoids the use of conventional dimensionality
reduction schemes. Furthermore, the proposed neural network-
based solution encompasses a new input-output space mapping
that directly establishes a liaison between input and target
spaces that does not depend upon dimensionality adjustment
modules. The performance of the proposed method has been
comparatively studied against other related projects for 3D
object pose estimation that are based on a) manifold modeling,
b) part-based solutions, c) conventional Principal Component
Analysis (PCA) and d) least-squares solution. Experimental
results provide evidence of low generalization error whilst
justifying our theoretical claims and our choice to adopt a
neural network-based solution. Finally, the most important
attribute of the proposed approach constitutes the fact that it
can be easily adopted by any advanced robotic framework that
either aims at solving the 3D pose estimation problem or is
dedicated to object manipulation processes.

II. RELATED WORK

Our work takes advantage of previous research conducted in
the area of feature representation and extraction for 3D object
recognition and pose estimation [22], [23], [24], [25]. Picking
up the most prominent patterns represents a challenging task
with a significant effect on the 2D-3D point correspondence.
In [26], a new method for efficient feature selection based on
a Fuzzy Functional Criterion, for the evaluation of the linkage
between the input features and the output score, is presented.
However, this technique is dedicated, specifically, to the head
pose problem for which it can report remarkable efficiency
when trained with numerous datasets. On the other hand, in

[27] and its extension [28] it was shown that a compact model
of an object can be portrayed by linking together diagnostic
parts of the objects from different viewpoints. Such parts are
defined as large and distinguishable regions of the objects that
are composed of many local invariant features. Despite the
efficiency of this architecture, the method is mainly devoted
to 3D object categorization.

Although neural networks are common place in several
computer vision applications, for the particular task of esti-
mating the 3D pose of an object only few approaches have
been proposed. Early studies [29], [30], [31], [32], [33] showed
that the adoption of neural networks in image processing is
recommended in cases where the task in hand encompasses
great physical complexity. In more detail, a modification of
Kohonens self-organizing feature map (SOM) is trained with
computer generated object views corresponding to one or more
object orientation parameters. Although the methods presented
in those papers reported significant gains in performance,
their networks could achieve generalizations for trained objects
only. Several methods in this area adopt dimensionality reduc-
tion schemes with the PCA and its variations being the most
popular one. For instance, in [34] an appearance-based method
for the efficient estimation of the pose of 3D objects, where the
PCA is utilized for dimensionality reduction, is presented. The
neural network is trained with the resilient backpropagation
method and, as far as the rotation parameters of the pose
are concerned, only two DoFs are estimated, corresponding
to in and out of image plane orbits. An extension of the
aforementioned technique is found in [35] where input feature
vectors are derived by nonlinear PCA. Both methods fail
to interpolate between two known pose configurations, since
they utilize object views with a sampling interval of 3o

and emphasize in distinguishing the input patterns into the
corresponding classes.

In [36] and [28] the closest works to our paper, regarding
the feature extraction and manifold modeling processes, are
presented. In particular in [36] a method for finding 4 or
5 close feature points, called Natural 3D Markers (N3Ms),
is presented, whilst the extracted features enjoy distinctive
photometric properties and equal distribution over the objects
visible surface. While the two approaches, both ours’ and
the one presented in [36], have similarities we believe our
model provides a more compact and abstract representation
of the 3D object. On the other hand, in [28] a method for
efficient manifold modeling that enables accurate 3D object
pose estimation is presented. Despite its sufficient results, this
approach has built manifolds of high dimensionality that do
not credit for intra-class distance minimization and inter-pose
variability maximization, respectively. In our case, we address
these issues by employing a modeling process that establishes
manifolds of low dimensionality that are augmented by a
shape descriptor. Moreover, we show that the proposed input-
output mapping adopted by a neural network strategy is
experimentally proved to provide more accurate results.



Fig. 2. The first stage of our approach incorporates the division of the labeled
databases into the the testing and training subsets. During training images of
objects with altering pose are given as input to the sub-routine of manifold
modeling that entails a) the unsupervised clustering of the abstracted features,
b) the subroutine of manifold establishment and c) the shape descriptor utilized
for both 3D pose estimation and recognition purposes. The ultimate goal of
our method is provide accurate decisions and predictions regarding the class
of the object and its pose, respectively.

III. METHODOLOGY

The proposed visual servoing method consists of into two
major components that directly affect the overall performance
of the system. The first module is dedicated to object recogni-
tion that makes use of a unified database based on MPEG-
7 [37] and ETH-80 [38] binary shape datasets. MPEG-7
dataset was utilized during the Core Experiment CE-Shape-
1, part B and contains 70 object classes with 20 images
per class resulting in 1400 images of objects. Additionally,
the aforementioned database is adopted due to the fact that
it is very useful for testing the performance of similarity-
based retrieval and the efficacy of shape descriptors. Moreover,
ETH-80 dataset represents an integrated database of images
of 8 different categories of objects and comprises of 80
targets captured under 41 different viewpoints. During the
testing session of our framework, where an unknown object
is provided to the system, the shape classification algorithm
categorizes the unknown particle to the corresponding classes.

The second module focuses on providing accurate measure-
ments regarding the 3D pose of the testing object. Highly
motivated from the fact that objects with identical poses lie on
similar subspaces, we propose a manifold modeling procedure
that makes use of two databases [39], [40] that contain col-
lections of different targets viewed under altering viewpoints.
Additionally, we enhance our training dataset by introducing
synthetically rendered data, where 3D models (available in
[41]) are captured under different geometrical configurations
of the camera. The 3D pose estimation module is based on the
unsupervised clustering of the extracted keypoints that unlike
in [28] does not depend on the ”alignment” and ”expansion”

operations. Furthermore, our manifold modeling framework
imposes upon a bunch-based architecture that encapsulates
both geometrical and appearance-based characteristics of the
objects. Additionally, due to the fact that our system makes use
of several databases containing numerous objects, our 3D pose
estimation module provides efficient predictions regardless of
the object category.

A. Bunch-based Architecture and Manifold Modeling

The ultimate scope of this subroutine is to design and imple-
ment a part-based formation capable of distinctively encapsu-
lating several attributes of the objects, to be fed into the man-
ifold modeling process. The proposed bunch-based structure
abstracts bunches or parts that enjoy both appearance-based
characteristics and geometrical ones, i.e. their location dis-
tribution. In [28] such bunches are abstracted in a supervised
manner, meaning that each part stands for the realization of the
Probability Density Function (PDF) associated with the joint
distribution of appearance and geometry attributes of a target.
Notwithstanding their sufficient performance levels, such an
approach, lacks generalization capacities to unknown objects,
since it can sufficiently represent only object models that are
already included in the training dataset. In this paper, we deal
with this problem by incorporating an unsupervised clustering
that is employed over the extracted keypoints of the object. As
far as the appearance-based characteristics are concerned the
latter are acquired by extracting invariant features organized in
high dimensional vectors by the SIFT descriptor [42] followed
by homography-based RANSAC [43] for outliers removal . As
a follow-up step, topological characteristics of the parts are
aggregated by a K-means unsupervised clustering method. Let
I(χ,Oi|Pj) representing the raw intensity values for the three-
channeled image I of object Oi ∈ [O1, O2, . . . , Om] with pose
Pj ∈ [P1, P2, . . . , Pn]. We then extract ρ interest key-points
and denote them as I(xρ, Oi|Pj)d, x ∈ R2, by integrating the
SIFT detector and descriptor, respectively. Here, d corresponds
to the dimensionality of the descriptor, which is chosen to be
128, whilst the resulted vector is normalized to unit length, in
order to maintain invariance to affine changes in illumination.
As a follow-up step, we assume only the locations x ∈ R2

of the extracted appearance-based features and we find those
clusters that minimize the following objective function:

J(c(1), . . . , c(ρ), µ(1), . . . , µ(κ)) =
1

ρ

ρ∑
i=1

||xi − µc(i) ||2 (1)

The construction of our bunch-based architecture is demon-
strated in the pseudocode form 1.

B. Manifold Modeling

In this paper as a manifoldM we define a locally Euclidean
topological space that is governed by a continuous and in-
vertible function φ(u) mapping any point u ∈ M to a point
v = [V1...Vd]

T ∈ Rd. d corresponds to the dimensionality of
the manifoldM and v = [V1...Vd]

T to the established coordi-
nate system. It is palpable that the most important attribute of
a manifold is the one of quantizing input data that in most of



Algorithm 1 Calculate the positions µκ of the γ clusters
1: Inputs: Locations of the ρ extracted SIFT features of the object Oi with pose Pj
2: while ||J(t+ 1)− J(t)|| > ε do
3: Compute:

J(c(1), . . . , c(ρ), µ(1), . . . , µ(κ), t)← 1
ρ

∑ρ
i=1 ||xi − µc(i) ||2

4: t = t+ 1
5: end while
6: where:
7: c(ρ) = index of cluster (1,2, . . . ,κ) to which feature ρ at location xρ is initially randomly assigned
8: µκ = position of cluster centroid κ (µκ ∈ R2)
9: µc(ρ) = centroid of cluster to which example xρ is assigned after one step of the algorithm

10: Outputs: Locations of the γ clusters over the surface of the object

the times are of high dimensionality. However, in the particular
problem of 3D object pose estimation, particular emphasis
should be given in the dimensionality of the manifold M,
since the latter affects directly the efficiency of any regressor
or classifier trained with large datasets. Towards this end, the
ultimate goal of the proposed work was to find the function
φ(u) that establishes a manifold M′ with the minimum
potential dimensionality. Additionally, the resulting manifold
M′ should be capable of efficiently categorizing similar poses
of several objects captured under identical viewpoints into
the same pose space. Towards this end, the establishment of
the manifold is adequately fulfilled via the calculation of the
distance of each member of the bunch-based architecture to a
given one.

Regarding the specific training object (O∗i |P ∗j )
we assume that the computed members of the
bunch-based architecture appoint the feature vector
e with the set of all feature vectors being
E = {ec : c is the number of clusters organized as vectors}.
Additionally, let e∗ ∈ E∗ be a randomly selected example
vector drawn from E∗ ⊆ E . The proposed manifold modeling
framework proceeds by computing the L2 norm between
vector ei ∈ E and anchor point e∗:

xi = ||ei − e∗||2 =
c∑
i=1

{ei − e∗}2 (2)

Afterwards, we train a Radial Basis Functions-based re-
gressor in order to acquire a mapping from a set of input
variables x = [x1, . . . , xd], belonging to a feature-space X ,
to a modeled output variable y = y(x;w) ∈ Y , with w
denoting the vector of the adjustable parameters. The ultimate
goal of our system is to learn a regressor g : X → Y from
an a priori training dataset {xn,yn}, in order to efficiently
approximate the output Yt, when an unknown example Xt
is provided. The proposed architecture encompasses a new
input-output mapping procedure that does not require common
dimensionality reduction operations. In particular, opposed
to [28] and [34] where the input vectors are of very high
dimensionality, the established manifolds are of low one and
are directly fed into the regressor.

C. Shape Retrieval and Classification

The ultimate goal of this module is to extract accurate
and highly representative shape-related information. In cases
where invariance with respect to a number of possible trans-
formations, such as scaling, shifting, and rotation, is required,
the task of extracting the respective shape descriptors is
characterized by large complexity and computational burden
[44]. In this paper we address this issue by utilizing a
complementary scheme of three different shape descriptors
for achieving optimum accuracy in shape representation [45].
Particularly, we employ the Fourier descriptors [46], which
are contour-based schemes that enjoy contour properties of
the object, and both affine moment invariants [47] and region-
based angular radial transform descriptors [48]. We revised
the state-of-the-art literature in the field of shape descriptors
in order to set the optimal number of coefficients with a
view to provide the pillars of efficient descriptor indexing. In
more detail, regarding the Fourier descriptors we utilize only
the first 32 descriptors, for the angular radial transform the
first 35 and 6 affine moment invariants. Object recognition is
achieved through the Fuzzy Lattice Reasoning (FLR) scheme
as outlined in a preliminary work [49]. In [49], a 2-D shape
is represented in a form of three populations of three different
shape descriptors d ∈ FD,ART, IM , respectively, such that
one population to corresponds to one Intervals’ Number (IN)
as detailed in [50], [51]. Additionally, a FLRtypeII scheme
for learning (training) was applied followed by a FLRtypeII
scheme for generalization (testing) on the benchmark data set.
Unknown object categorization is adequately accomplished by
classifying the testing target into the class with the smallest
distance.

IV. EXPERIMENTAL RESULTS

The performance of the proposed manifold modeling ap-
proach was evaluated through a series of experiments that
a) are dedicated to the 3D object pose estimation problem
and b) focus on object manipulation. Regarding the first
category of experiments particular emphasis is given to par-
tial occlusions since the latter affect directly the efficiency
of any computer vision scheme. Although several research
endeavors and achievements reached so far, an advanced



Fig. 3. The performance of our method against partial occlusions is
comparatively evaluated with the works of Hinterstoisser et al. [36] and Mei
et al. [28].

imaging method typified with adequate trade-offs between
computational burden and high generalization capacities, has
yet to been built. In our work the problem induced by partial
occlusions is addressed by expanding our training database
with images of partial occluded objects. Concretely, partially
occluded objects that are introduced in the existing database
with the percentage of artificially generated obstruction lying
in the range [0-95]. Additionally, we adopt the evaluation
criterion presented in [36] in order to comparatively evaluate
the performance of the proposed 3D pose estimation module
against partial occlusions. According to the particular metric
of [36] a measurement regarding the 3D pose of an object
is considered as successful in cases where the error of the
computed rotation parameters is less than 50. The superiority
of our work compared to other related works is illustrated in
Fig. 3. It is palpable that, experimental results of this first
category provide evidence that our method is more tolerant to
partial occlusions than the works of Hinterstoisser et.al [36]
and Mei et al.[28].

We have additionally evaluated the performance of the pro-
posed framework through experiments dedicated to object ma-
nipulation. According to the literature, in the field of robotics
research two major camera configurations for vision-based
scene understanding are discerned. Eye-in-hand and eye-to-
hand architectures entail either mounting the vision sensor(s)
onto the robot’s end-effector or installing cameras capable of
observing the working space of the robot, respectively. In
this paper we propose an eye-to-hand camera configuration
without, however, limiting our work to such scenarios. Indeed,
initial experimental results demonstrated that our manifold
modeling approach that utilizes shape information of objects,
can be easily adopted to accomplish object manipulation tasks
within an eye-in-hand architecture. Fig. 4 demonstrates the
efficient accomplishment of several manipulation tasks by the
proposed method.

Fig. 4. During these series of experiments we utilized three vision sensors,
one installed over the working space of the robot, one capturing the working
space sideways and one overseeing the overall procedure. Additionally, we
utilize the SCORBOTE-ER Vplus robotic arm, which is a vertical articulated
robot with 6 DoFs, in order perform object manipulation tasks.

V. CONCLUSION

In this paper we presented a novel solution to the problem
of automatic vision-based object manipulation. Our framework
lays its foundations on the intuition that different objects
viewed under the same perspective share identical poses that
can be efficiently projected onto high representative subspaces.
We employ a part-based scheme that encapsulates several
attributes of the objects such as shape, appearance and ge-
ometry. Our manifold modeling procedure imposes upon the
unsupervised clustering of the extracted visual cues that is
responsible for feeding an RBF-based regressor. Comparative
experimental results demonstrated a) the invariance of our
work against partial occlusions and b) the superiority of our
work opposed to other related projects. Regarding the future
work, we aim at designing and implementing a novel manifold
modeling architecture capable of creating without supervision
ontology-based databases that hold information exploited in
challenging image understanding tasks.
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