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Abstract—We propose a novel solution to the problem of 3D
object pose estimation problem that is based on an efficient
representation and feature extraction technique. We build a part-
based architecture that takes into account both appearance-
based characteristics of targets along with their geometrical
attributes. This bunch-based structure encompasses an image
feature extraction procedure accompanied by a clustering scheme
over the abstracted key-points. In a follow-up step, these clusters
are considered to establish representative manifolds capable
of distinguishing similar poses of different objects into the
corresponding classes. We form low dimensional manifolds by in-
corporating sophisticated operations over the members (clusters)
of the extracted part-based architecture. An accurate estimation
of the pose of a target is provided by a neural network-based
solution that entails a novel input-output space targeting method.
The performance of our method is comparatively studied against
other related works that provide solution to the 3D object pose
estimation and that are based on a) manifold modeling, b) object
part-based representation and c) conventional dimensionality re-
duction frameworks. Experimental results justify our theoretical
claims and provide evidence of low generalization error when
estimating the 3D pose of objects, with the best performance
achieved when employing the Radial Basis Functions kernel.

I. INTRODUCTION

The task of estimating the 3D pose of an object is among the
most challenging ones in computer vision due to its practical
significance and its ability to be adopted into a plethora of
diverse applications. In recent years, a number of applications
have primarily focused on detection and estimation of objects’
pose from either a single or multiple instances for a given
template [1], [2], [3]. The ultimate goal is to diffuse this
technology to deliver efficient accomplishment of complex
tasks, such as object manipulation, robotic navigation etc [4],
[5], [6]. Despite the substantial endeavors and certain achieve-
ments made so far, no advanced computer vision system
characterized with sufficient trade offs between computational
burden and performance, has yet been built.

Although humans exhibit remarkable skills in estimating
the relative pose of rigid objects given an initial hypothesis,
such an ability is limited in contemporary computer vision
systems. In this paper we attempt to address this issue, by
introducing a neural network-based framework that is not
only able to estimate the 3D pose of any object contained
in the database, but also to generalize to unknown ones.
The network is trained with numerous targets contained in
several available datasets [7], [8]. Furthermore, the part-based
architecture is additionally guided by the extraction of the
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Fig. 1. In this figure the main idea underlying the proposed method is
shown. The part-based architecture is built through the processes of key-point
extraction 1(a) and a clustering procedure based on Neural Gas 1(b). The next
phase entails the establishment of the manifold that stands for the distance of
each of these clusters with a given one 1(c). As a final step, several manifolds
representing numerous training objects are considered as input to a neural
network-based framework that is simulated in order to estimate the 3D pose
of the object 1(d).

centers of the abstracted features by applying the Neural Gas
algorithm [9]. One could say that the manifold of the 3D
model of an object in a known training instance is governed
by the distances of the extracted clusters from one particular
center as shown in Fig. I. It is palpable that the proposed
method involves a new input-output mapping that reduces the
dimensionality of the input vectors with good performance. A
number of experimental results were executed in order, firstly,
to demonstrate the performance of the present technique and,
secondly, to evaluate several network architectures in known
datasets.

The contribution of this paper, among others, entails the
formalization of this novel manifold modeling that avoids
the use of conventional dimensionality reduction techniques
widely used in image understanding applications. Additionally,
the proposed method does not restrain the learning module
of the algorithm by not requiring extensive supervision in
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the particular task of finding representative descriptions of a
3D object pose model. Furthermore, exhaustive experimental
evaluation provided evidence of both low generalization error
obtained through the proposed sparse manifold modeling and
non-linear mapping between input and output space, justi-
fying our choice to adopt a neural network-based strategy.
Furthermore, we analyze the input-output mapping process and
discuss generalization issues on unknown objects, while to the
best of our knowledge, in the field of neural network-based
computer vision, such an attribute of efficient data handling
constitutes a novel approach.

II. RELATED WORK

In order to the efficiently fulfill the 3D object pose esti-
mation task, a computer vision method should tackle several
cascading issues that hinder its effective application. That
have being said, the dimensionality d of the manifold of the
input space that influences the performance of a regressor
or a classifier is directly related with the complexity of the
problem in hand. The computational burden of the training
process along with costs associated with gathering, storing
and processing data, can be sufficiently reduced by applying
dimensionality reduction over the input vectors. Additionally,
when information is represented with fewer features input
models are more tolerant to noise, outliers and other distur-
bances, while the process is controlled in a more efficient
way. Since, in this paper we adopt a neural network strategy,
particular indication should be given to the dimensionality
of the input vectors used for training the net. While other
related approaches in this field encompass conventional di-
mensionality reduction techniques (e.g. Principal Component
Analysis (PCA), Independent Component Analysis (ICA),
Multi-Dimensional Scaling (MDS)), the proposed method is
based on a new input-output mapping that targets directly the
parameterized pose space. In [10] Yuan et. al, showed that a
common neural network architecture accompanied by PCA for
dimensionality reduction, can provide sufficient solution to the
3D object pose estimation problem. The net is trained with the
resilient backpropagation method, whilst only two Degrees of
Freedom (DoFs) are estimated.However, this approach fail to
interpolate between two known pose configurations, since it is
trained over object views with a sampling interval of 3o and
dedicated to distinguishing test patterns into the corresponding
classes. Finally, we could identify several other methods [11],
[12], [13] that failed to attract scholars’ interest on account of
their vague architecture and inadequate performance stability.

Our work imposes upon previous research endeavors con-
ducted in the area of part-based (or constellation-based) 3D
object pose estimation that emphasize in learning highly dis-
criminative object pose models [14], [15], [16]. These methods
showed that the efficiency of the 2D-3D point correspondence
sub-routine is directly related to the process of selecting
the most prominent visual patterns available. Recently, the
linkage between input features and output score was evaluated
based on a Fuzzy Functional Criterion. This fuzzy logic-based
approach was presented in [17], whilst reporting a remarkable

solution to the head pose estimation that depends on a large
scale training module. On the other hand, the main attribute
of any constellation-based scheme, as it was shown in [18],
constitutes its remarkable ability to portray compact object
models by linking together diagnostic ”parts” of the objects
from different viewpoints. These ”parts” correspond to large
and distinguishable regions over the surface of the objects that
are composed of large amount of local invariant appearance-
based features.

To the best of our knowledge and regarding the processes
of feature selection and manifold modeling, the closest works
to our paper are presented in [19] and [20], respectively. In
[19] Hinterstoisser et. al, proposed a bunch-based structure
called ”Natural 3D Markers”, which employs a method for
extracting 4 or 5 close feature points that enjoy both distinctive
photometric properties and equal distribution over the visible
surface of the objects. However, as comparative experimental
results prove, this method fails to construct compact and
abstract representations of the 3D objects, whilst being less
tolerant to partial occlusions. On the other hand, the work
presented by Mei et. al in [20], provided evidence of ef-
ficient manifold modeling that enables accurate 3D object
pose estimation. Notwithstanding its remarkable results, this
approach has several drawbacks: a) the part-selection process
requires extensive supervision during the learning procedure,
whilst limiting the 3D object pose estimation to cars only;
b) the resulting manifolds are of very high dimensionality
that influences directly the performance of any regressor or
classifier; c) the dataset used for learning is limited. Ad-
ditionally, due to the fact that the learnt manifolds are of
arbitrary dimensionality and architecture, the authors proposed
the ”alignment” and ”expansion” operations, in order to credit
for intra-class distance minimization and inter-pose variability
maximization, respectively. In our case, we utilize a manifold
modeling approach of a known architecture that does not
require the aforementioned operations. Moreover, we also
show that the proposed input-output mapping adopted by a
neural network strategy is experimentally proved to provide
more accurate results.

III. METHODOLOGY

In this section we present the input-output mapping process
upon which the training of the neural network-based approach
is performed. The overall system can be viewed as a mapping
from a set of input variables x = x1, . . . , xd, belonging to a
feature-space X , to a modeled output variable y = y(x;w) ∈
Y , with w denoting the vector of the adjustable parameters.
The ultimate goal of our system is to learn a regressor g :
X → Y from an a priori training dataset {xn, yn}, in order
to efficiently approximate the output Yt, when an unknown
example Xt is provided. Fig. 2 illustrates the basic components
of our system that are next discussed in the remainder of this
section.

The labeled training dataset contains m training examples,
i.e. images, of k objects-targets along with the corresponding
pose groundtruth. The construction of the training set {xn, yn}



Fig. 2. Initially, labeled databases are divided into training and testing
subsets, whilst for every object of the first set features’ coordinates (u, v)i are
extracted. As a follow-up step, the proposed input-output mapping technique
takes over the construction of the set {xn, yn} that is used for training
the regressor. The ultimate purpose of our system is to provide an efficient
approximation Yt when an example Xt, belonging to the testing subset, is
presented to the network.

is based on an iterative process over m images of k objects. For
the facilitation of the nomenclature and with a view to reader’s
better understanding, the remainder of this section presents
the aforementioned iterative process for the specific object k∗.
Initially, the image feature coordinates (u, v)i are calculated,
with i denoting the number of the extracted keypoints. The
next step is to employ the Neural Gas clustering algorithm,
in order to appoint feature vector E = (u∗, v∗)c, where c
represents the number of clusters organized as vectors and
E the new images coordinates of the these clusters.

Let e∗ ∈ E∗ be a randomly selected example drawn from
E∗ ⊆ E vector of clusters. The proposed input-output mapping
method proceeds by estimating the Euclidean distance between
vector E and anchor point e∗:

xi = ||E − e∗||2 =
c∑
i=1

{E − e∗}2 for i = 1, . . . , c (1)

The most common approach for the input normalization
is the linear transformation of given vectors so that input
variables are independent. Basically, such a kind of informa-
tion transformation are generally based on the mean removal
method and results in sets of input vectors that have zero mean
and unit standard deviation. However, this linear rescaling
treats input variables as independent while in most of the cases
they are not. With a view to achieve an efficient solution to
this problem we adopted a more prominent strategy which
allows correlations amongst variables [21]. Therefore, input
variable xi is organized into vector x = (x1, . . . , xc)

T, while
the sample mean vector and the covariance matrix with respect
to the L data points of the training set are:

x =
1

L

L∑
n=1

xn

Σ =
1

L − 1

L∑
n=1

(xn − x)(xn − x)T (2)

This normalization results in vectors with the input variables
given by the following formula:

x̃n = Λ−1/2UT(xn − x) (3)

where U = (u1, . . . , uc) and Λ = (λ1, . . . , λc) correspond
to the eigenvectors and eigenvalues, respectively, which are
calculated from the covariance matrix Σuρ = λρuρ.

The input-output mapping procedure iterates over m images
of k objects holding information about the pose of the target.
Since the employed databases contain numerous combinations
of geometrical orientations, the most challenging task consists
of finding features that repeat when matching one object’s
image with others depicting the same target under different
viewpoints. More specifically, training datasets consist of
images of objects shot every 5o and correspond to known poses
yn , as they are placed on a turntable and the orientation of
the camera alters between the three axis X,Y and Z ∈ R. In
order to clarify the feature extraction process, the building of
the training set and the simulation of the network we illustrate
the process in Fig. 3. The training phase incorporates both the
building of the training set {xn, yn} and the training of the
regressor. ∆m as shown in Fig. 3, stands for the tracking
sensitivity of our system and its span, e.g. [−30o,+30o],
constrains the output of the regressor to the same range,
without affecting the efficiency of the tracking process though.
The regressor g as shown in the particular example of Fig.
3, is a RBF-based one being responsible for estimating the
pose of the test object ytest as g({xn, yn}; ytest). In order
to evaluate the potential of the architecture of each regressor
we have examined the corresponding mean squared errors.
The final stage of the proposed framework encompasses the
training of the neural network-based regressor using the set
{xn, yn} and the simulation of its output. In order to evaluate
the performance of the regressor we have tested several neural
network architectures with numerous attributes.

IV. EXPERIMENTAL RESULTS

Initially the authors would like to note that there is a
serious lack of databases devoted to 3D object pose estimation,
opposed to datasets existing for recognition and classification
purposes. Furthermore, as far as the experimental evaluation
is concerned, we make use of the only available databases of
COIL-100 [8] and CVL [7] for 3D object pose estimation.
In addition, the feature extraction process is accomplished
using the SIFT algorithm [22] followed by homography-based
RANSAC [23] for outliers removal. Moreover, as stated above,
unsupervised clustering is accomplished through the Neural
Gas algorithm presented in [9]. At this point we would like
to state that, regarding the feature extraction process, the pro-
posed framework can be easily adjusted in order to integrate
any combination comprising a detector and a descriptor and it
is not limited by the selection of SIFT. Likewise, concerning
the clustering procedure, there are no limitations, while Neural



Fig. 3. The training module of the proposed system comprises the process of building the training set {xn, yn} and that of training the neural network-based
regressor. In the first instance, images of objects belonging to labeled datasets dedicated to training are drawn with the view to construct the training set to
be fed to the regressor. As a final step, images of targets associated with the testing databases are further processed in order to provide an estimation of the
pose of the test objects.

Fig. 4. Comparative evaluation of the proposed framework in cases where
an estimation of the pose is considered successful if the error of the estimated
rotation parameters is less than 5 (Upper) and 3 (Lower) degrees, respectively.

Gas was favored among others primarily due to its quantization
capabilities.

The most common evaluation criterion utilized by methods
dedicated to 3D object pose estimation is the one of testing
the performance of the respective algorithms under varying
percentages of partial occlusions. The latter play a vital role

in image understanding applications since they affect directly
the efficacy of decoding schemes. In this paper, we address
this issue by expanding our training set {xn, yn} with images
of partially occluded targets. Partial occlusions are introduced
artificially, while the percentage of obstruction lying in the
range [0-95]. Moreover, by adopting the evaluation criterion
presented in [19], we have tested our framework’s variance
against occlusions and compared it with other highly related
work resulting in the outcomes depicted in Fig. 4(Upper).
This figure demonstrates the condensed results from simulated
networks with over 200 testing examples are presented. Ac-
cording to the adopted evaluation criterion, an estimation of
the pose is considered successful, if the error of the estimated
rotation parameters is less than 50. The RBF-based version of
our system proved to be more tolerant to partial occlusions
compared to the works of Hinterstoiser et al. [19], Mei et al.
[20] and Yuan et al. [10]. Furthermore, we have additionally
evaluated all methods for a permissible error of 3o with the
results being depicted in Fig. 4(Lower). The visual outcome of
the proposed manifold modeling approach is presented in Fig.
7. Fig. 6 depicts the performance of our work in the particular
task of tracking unregistered objects where an unknown test
example was presented to the system. Finally, we have further
tested our approach for totally unregistered objects in order to
evaluate its performance against large oscillations in scale and
illumination circumstances, with the visual results illustrated
in Fig. 5.

V. CONCLUSION

We proposed a new manifold method that moves away
from conservative dimensionality reduction schemes, such as
the PCA with their inevitable information loss. Concretely,
in this paper we presented a novel solution to the 3D object



Fig. 5. The proposed approach can efficiently provide accurate estimations
regarding the 3D pose of unregistered objects for different scales and
illumination conditions.

pose estimation problem that lays its foundations on unsuper-
vised learning and its part-based architecture that encapsulated
both appearance and geometrical attributes of the objects.
Moreover, experimental results revealed two major aspects:
a) The relation between input space, which is defined over the
trained objects, and the output one, characterizing the target
models, is a non-linear one; b) our choice to adopt a neural
network-based strategy, which efficiently captured this non-
linear binding, was totally justified. Looking ahead to future

work, the authors plan to construct a new database for 3D
object pose estimation, with translation parameters included.
In addition to, future work entails testing the performance of
the system under several mixtures of detectors and descriptors
and clustering techniques.
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Fig. 6. This figure demonstrates the large generalization capacities of the proposed method since the latter is capable of tracking an unregistered object in
cluttered environment under different rotations over the three axes X , Y and Z.

Fig. 7. This figure presents the outcome of the proposed framework for several test objects under varying percentage of artificially generated (due to database
shortages) partial occlusions.


