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Abstract

This paper aims at making a contribution to a typical recognition scheme by means of providing
position information of the recognized objects. In the near future, robotics systems are expected
to be able to provide services in humans’ daily life which can only be achieved if they are de-
signed with advanced intelligent vision systems. Highly motivated from that fact, this work presents
a framework capable of recognizing objects and estimating their location in the 3D space. The
method excels in simplicity and computational cost, whilst its database can be easily adopted to
the needs of simultaneous multi-object recognition. In real-life scenarios, lighting conditions may
alter drastically and, along with possible shadow effects, may affect directly the efficiency of the
visual data encoding scheme. Towards this end, recently proposed image enhancement methods
emphasize in reducing the effect of unfavorable illumination conditions and their consequences.
The proposed 3D position estimation framework was assessed under several image-enhancement
conditions by means of selecting the most appropriate pre-processing algorithm.

1 Introduction

The task of recognizing objects found in a particular scene attracted computer vision researchers’
attention for several decades, whilst instances where recognition suffers from occlusions, noise,
cluttered background or even poor lighting conditions, test the robustness of the respective algo-
rithms. Local-appearance-based object detection frameworks dominate due to their ability to extract
meaningful visual information efficiently and accurately. State-of-the-art recognition frameworks
[32, 27, 22, 6] rely on two mechanisms, those of the detector and descriptor, respectively. The
first one is responsible for extracting spots or areas of a scene that can be easily distinguished in
their local setting. As a follow-up step, a descriptor is devoted to the transformation of information
collected from the detector into high dimensional feature vectors. Consequently, an object is rep-
resented by these vectors. A method comprising of both detector and descriptor is referred in the
literature as a two-part approach. SIFT [21] and SURF [9] are the two most popular ones adopted
in almost any newly proposed recognition framework.

An aspect that has not received much attention in the literature, is how to exploit the data derived
during recognition with a view to provide objects’ spatial information. Apart from its identifica-
tion, several other object-related characteristics, such as its distance to the camera or its pose, i.e.
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orientation relative to the camera’s plane, can be obtained [28, 24, 12, 14]. The problem of actively
searching for a target in a 3D environment has lately received attention in [8], where both multi-
view and single-view recognition and detection schemes are exhaustively examined. However, the
results stand only in theory, whereas sophisticated vision systems require realistic and practical
measurements of targets’ location in the 3D space. On the other hand, it has been shown [15] that
it is possible to estimate objects’ location in a scene by combining 3D-based target models with
information derived from a single 2D image. The final 6-Degree of Freedom (DoF) localization is
obtained by accumulating the correspondences between extracted features and the 3D target on a
Hough table. However, the main drawbacks of the method include both its deficiency to recognize
and estimate the location in the 3D space of non-rigid objects and the unnecessary extraction of
irrelevant low-level features. A framework with low computational demands that utilizes stereo
cameras, a large amount of frame memory and several vision modules has been presented in [34].
The outcome of this algorithm is a real-time solution in terms of both object recognition and posi-
tion estimation. However, its limitations stem from the constraints of objects’ CAD-based model
knowledge and the contour-based feature extraction. A recent algorithm for searching a scene for
unknown objects in the 3D environment is shown to provide remarkable results [26]. That method
was implemented in a mobile, four-wheeled robotics platform equipped with a Point Grey Research
Bumblebee camera mounted on a pan-tilt mechanism. This particular method relies on the efficient
estimation of a scene’s depth obtained by embedded camera’s modules and the target’s detection
accomplished via SIFT.

In the field of multi-camera systems, the Stanford Multi-Camera Array [29] has dominated,
over a period of several years, as the ultimate multi-view framework. It consists of 128 cameras
that can be arranged and used in a variety of ways. In this system, the final camera architecture
corresponds to an arc of separate panels aiming at a point in the middle of the room. The multi-
camera system, developed by the UD Graphics Lab [35], consists of 10 Flea2 1394b cameras, with
a subset of them mounted on movable plates attached to ceiling racks and the remaining placed
at different positions using tripods. The target applications of the aforementioned framework are
multi-view surveillance, capturing of dynamic fluid surfaces or appearance modeling. In addition,
the Mitsubishi Electric Research Laboratories (MERL) has designed a framework, where the object-
wise semantics are extracted from a non-overlapping field-of-view multi-camera system [36]. Its
main goal is the construction of an automatic object tracking and video summarization method via
background subtraction and mean-shift analysis.

This paper intends to present a simple and easy to construct framework for location assignment
of multiple objects found in a scene. It emphasizes in building a sophisticated scheme with low
complexity and computational burden that could be adopted to systems with moderate processing
capabilities. This is due to the fact that, the proposed algorithm estimates only the 3D position and
not the orientation of any target in the workspace. Therefore, it avoids the laborious estimation of
the full pose using planar homographies [14]. The proposed framework is based on a multi-camera
system comprising of four Grasshopper cameras [1] manufactured by PointGrey Research. The
algorithm exploits basic proportional geometrical attributes of the object in a scene, related to the
camera. The whole process can be understood as a two stage procedure, where the first corresponds
to the recognition task and the second to the 3D position estimation one. As far as recognition is
concerned, the algorithm requires, but is not limited to, any two-part method (both a detector and a
descriptor), whilst in the current implementation the classical SIFT is adopted. The training phase of
the system is devoted to its database construction where objects-targets are registered. As a follow-
up step, the location assignment process of the sought objects takes into account essential visual data
derived during recognition. In particular, it exploits features distribution over the object’s surface in
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(a) (b) (c)

(d) (e) (f)

Figure 1: a) A scene containing several objects and its enhanced version when applying the b)
CLAHE, c) FLOG, d) MSRCR, e) ORASIS and f) SAPONARA algorithms, respectively.

order to effectively estimate its location in the 3D space. The proposed method excels in simplicity
and computational cost, whilst its main contribution is its ability to transform information from the
image plane to the real world. Our claim that the distributions’ similarity estimation can produce
an accurate measurement about objects’ position in the 3D space is demonstrated experimentally.
Furthermore, acquired images may suffer from poor lighting conditions or inherent noise, leading
to reduced viewing quality and, consequently, to limited extracted features. Towards this end, in
the same paper, the impact of several image-enhancement methods is compared, when acting as a
pre-processing step. The one leading to optimum recognition results is selected for our system.

2 Image Enhancement Methods

During the past decade machine vision evolved sufficiently enough to provide sound solutions
to numerous complex and demanding tasks [19, 10, 7, 11]. Moreover, images obtained by a vision
sensor contain large amount of noise accompanied with poor illumination circumstances that result
in poor image clarity. Several image enhancement algorithms try to solve this problem. [23, 20,
16, 30, 25]. In this paper a limited selection of a large number of contrast modification algorithms
was assessed, particularly, those that provide the most promising results and, in more wide use in
computer vision. More specifically, the methods utilized are the:

• Contrast Limited Adaptive Histogram Equalization (CLAHE) [23]

• Fused Logarithmic Transform (FLOG) [20]

• Multi-scale Retinex with Color Restoration (MSRCR) - PhotoFlair [16, 2]

• Fast Centre-surround Contrast Modification - ORASIS [3]

• Algorithmic and Architectural Design for Retinex Processing - SAPONARA [25]
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Figure 2: The conceptual idea of the proposed 3D position estimation method. An object is recog-
nized and its position within the working volume, defined by the multi-camera system is estimated
by taking into account features’ distribution over the surface of the sought target.

The tenacious reader can refer to [31] for a more exhaustive comparison of the aforementioned
image enhancement algorithms. The effect of each algorithm in a test scene is depicted in Figure 1.

3 3D Position Estimation

The goal of this paper is to exploit data derived through recognition, in a way that the absolute
position in the three dimensional space of the sought objects can be easily estimated. The key idea
underlying the proposed 3D position estimation method is presented in Figure 2. The multi-camera
system consists of four sensors corresponding to image planes A,B,C and D respectively. During
training, where the system remains off-line, several objects from different viewpoints and distances
to each camera are captured and stored into the database. Features extracted via any two-part
method are distributed over the surface of the objects whilst, in the particular example of Figure 2,
object’s feature points (PA,PB,PC) are located on the respective image planes and represented by
(P∗A ,P

∗
B ,P

∗
C). Thus, given that one distribution of features corresponds to a known object’s distance

from the camera [17, 18], the goal is to estimate the latter in cases of new features’ scattering. Thus,
we are able to calculate the distance of objects from the cameras in any environment, which in turn,
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could be labeled as a top-down depth estimation technique.
In addition, multi-camera calibration provides spatial data with respect to the cameras’ arrange-

ment in the 3D space in terms of absolute positions. In other words, due to the performed cali-
bration, each camera’s pose in the 3D environment, as well as the relative pose to each other, are
precisely known. Since spatial information concerning both, the distance of the objects’ from each
camera and the geometrical alignment of the cameras in the 3D space is known, it is possible to
assign an absolute position to the recognized objects. The most significant contribution of the pro-
posed method is its ability to translate information, derived from even one single 2D image, into a
registration of the objects in the 3D space.

The proposed algorithm is divided into two discrete phases: an off-line and an on-line one. Cam-
eras’ calibration techniques aim at estimating the intrinsic and extrinsic parameters of the respective
sensors. In the proposed algorithm, the intrinsic attributes are extracted via the toolbox available
in [4], while the extrinsic ones by adopting the method proposed in [33] for multi-camera calibra-
tion. As a result, information concerning the cameras’ position during the capturing process and
their coordinates in the 3D space are extracted. Notationally, the four cameras’ coordinates in the
real world correspond to (X ,Y,Z)i, while each sensor’s intrinsic parameters are the focal length, f i

and the principal point, C = (Cx,Cy)
i for i=1,2,3,4, respectively. During the off-line phase of the

algorithm, the training session of the proposed method also takes place; where several objects are
shot from different viewpoints and distances from the cameras. The distance of each object along
with its identification number and the camera used for capturing are also stored into the database.

The second phase of the proposed 3D position estimation method consists of an on-line system
that requires visual input from the four cameras, i.e. four monocular images, and provides an ac-
curate location estimation of the recognized objects. We estimate the distance of objects from a
single camera first by extracting feature points positions using SIFT in both the scene’s (streamed
by the camera) and the object’s (retrieved from the database) image. We have chosen SIFT (from
a large deposit of available two-part approaches) due to the fact that it produces larger features’
distributions over the objects’ surfaces. In [18], we have evaluated the most popular two-part ap-
proaches, namely SIFT and SURF, in objects’ depth estimation tasks. SIFT has proved to be more
reliable due to the fact that the extracted features appear more scattered than the ones extracted by
SURF. Furthermore, by adopting the matching sub-procedure of SIFT we obtain the N features that
match in the two images. We define as (XS j ,YS j)

i,where j=1,2,. . . ,N and i=1,. . . ,4 the positions of
the N features on the scene’s image plane as captured by camera i and (XO j ,YO j),where j=1,2,. . . ,N
those in the object’s one. Moreover, the features’ centers of mass for both images are represented
as (XSC ,YSC)

i and (XOC ,YOC), respectively, and are calculated via the following expressions:

(XSC)
i = (

1
N

N

∑
j=1

XS j)
i and (YSC)

i = (
1
N

N

∑
j=1

YS j)
i

XOC =
1
N

N

∑
j=1

XO j and YOC =
1
N

N

∑
j=1

YO j

(1)

As a following step, the mean Euclidean distance of each feature from the corresponding center
of mass is computed. (ES)

i and EO, are those distances in the scene’s and object’s image plane,
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Figure 3: The projection of the actual object’s distance from the camera (W ∗) on the camera’s
optical axis.

respectively and are estimated as:

(ES)
i =
( 1

N

N

∑
j=1

√
(XS j −XSC)

2 +(YS j −YSC)
2
)i

EO =
1
N

N

∑
j=1

√
(XO j −XOC)

2 +(YO j −YOC)
2

(2)

In the next stage, we estimate the ratio dS of the two mean distances (ES)
i and EO, respectively.

The initial object’s distance W from the camera i is obtained by multiplying this ratio with the
respective distance from the sensor (dO) as measured during training.

W = dO ·dS = dO ·
EO

(ES)i (3)

Although, the aforementioned process provides a relatively accurate estimate for W , the realistic
and more representative estimation is derived by taking into account the attributes of the pinhole
camera model as it is presented in Figure 3, where W corresponds to the object’s distance from the
camera only in the cases where the latter lies on point (A) belonging to the optical axis, i.e. the
line passing through the sensor’s principal point C. In any other case, the line starting from point D
crosses the image plane at point P and ends at point O, forming an angle ϕ̂ . Point P on the image
plane corresponds to the features’ center of mass of the recognized object. Moreover, the triangles
4

OCP and
4

OAD shown in Figure 3 are similar, therefore:

OC
CP

=
OA
AD
⇒ f

h
=

W
H
⇒ H =

W ·h
f

(4)
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In turn, angle ϕ̂ is estimated on the image plane taking into account the coordinates of both the
principal point and the features’ center of mass. Thus, ϕ̂ = atan2(y,x). Moreover, from triangle
4

BAD we obtain that α = cos(ϕ) ·H and γ = tan(ϕ) ·α . In addition, the triangles
4

OAD and
4

BOA are
similar resulting in:

OD
AD

=
OA
AB
⇒ W ∗+ γ

H
=

W
a
⇒

(W ∗+ tan(ϕ) ·α) · cos(ϕ) =W ⇒

W ∗ =
W · ( f − tan(ϕ) · cos2(ϕ) ·h)

cos(ϕ) · f

(5)

which corresponds to the actual object’s distance from the camera projected on the image plane.
It is apparent that, for the above estimation a single view is required, to extract angle ϕ̂ and distance
h. Thus, from a single 2D view we may obtain reduced information regarding the 3D positioning
of the object.

The four cameras of the system are positioned at the respective corners of a rectangle room with
a known geometry, whilst all the sensors lay at the same level of the vertical axis (Z). Furthermore,
the global reference system noted with (X ,Y,Z) = (0,0,0) is assigned to camera 1 and, therefore,
cameras 2,3 and 4 are set at (δ ,0,0),(δ ,κ,0) and (0,κ,0), respectively. By applying the aforemen-
tioned steps in the proposed algorithm we are able to estimate the distance of the object from each
camera. Its final position in the 3D space is calculated by taking into account information derived
from all the four viewpoints. Practically, an object lies on the surface of a sphere centered on the
camera’s frame with a radius equal to the respective object’s distance from the sensor. It is apparent
that the sought object’s location is established at the intersection of any two spheres corresponding
to the respective sensors. To this end, the spheres’ equations for all cameras are represented by the
following formulae:

x2 + y2 + z2 = Q2
1 for camera 1, (6)

(δ − x)2 + y2 + z2 = Q2
2 for camera 2, (7)

(δ − x)2 +(κ− y)2 + z2 = Q2
3 for camera 3 and (8)

x2 +(κ− y)2 + z2 = Q2
4 for camera 4 (9)

where Q1,Q2,Q3 and Q4 correspond to the object’s distances from the cameras 1,2,3 and 4,
respectively. Let us consider the intersection of the two spheres corresponding to cameras 1 and 2:

x =
δ 2 +Q2

1−Q2
2

2 ·δ
(10)

The intersection of the two spheres corresponds to a curve lying in a plane parallel to the Y Z
plane. By substituting Eq. (10) in Eq. (6) we obtain:

y2 + z2 = Q2
1−
(

δ 2 +Q2
1−Q2

2
2 ·δ

)
=

4 ·δ 2 ·Q2
1− (δ 2 +Q2

1−Q2
2)

2

4 ·δ 2

(11)
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Table 1: The errors obtained after calibrating the four cameras.

Camera 1 Camera 2
Focal length (fc) [376.27 , 375.56] [376.83 , 376.14]
Focal length uncertainty (fc error) [1.1336 , 1.1270] [0.9999 , 0.9922]
Principal point (cc) [316.0181 , 258.6816] [324.9401 , 233.3931]
Principal point uncertainty (cc error) [0.8764 , 0.6881] [1.1726 , 0.8014]
Distortion coefficients (kc) [-0.2354 , 0.0651 , -0.0011 , -0.0007 , 0] [-0.2403 , 0.0771 , -0.0007 , -0.00001 , 0]
Distortion coefficients uncertainty (kc error) [0.0023 , 0.0025 , 0.0002 , 0.0003 , 0] [0.0025 , 0.0025 , 0.0002 , 0.0004 , 0]

Camera 3 Camera 4
[376.43 , 375.65] [373.33 , 372.68]
[1.5235 , 1.5481] [1.3906 , 1.3921]

[325.9704 , 245.8028] [324.0573 , 256.7374]
[1.3855 , 1.0438] [0.8714 , 0.6902]

[-0.2324 , 0.0641 , -0.0014 , -0.0005 , 0] [-0.2422 , 0.0820 , 0.0007 , 0.0006 , 0]
[0.0042 , 0.0061 , 0.0004 , 0.0003 , 0] [0.0027 , 0.0033 , 0.0002 , 0.0002 , 0]

which represents a circle with radius:

ρ =
1

2 ·δ
[(−δ +Q2−Q1) · (−δ −Q2 +Q1)·

(−δ +Q2 +Q1) · (δ +Q2 +Q1)]
1
2

(12)

Through calibration we obtain cameras’ orientation relative to the multi-sensor system, in terms
of global translations and rotation angles θ̂ with respect to Z axis measured on the X axis. An
object’s location with respect to the Y axis is estimated by taking into account the extracted object’s
distance from the camera and the angle θ̂ , such as y = W ∗ · sin(θ). By substituting the latter into
Eq. (11) we obtain a first estimation of object’s position in the 3D space, i.e (X ,Y,Z) relative to the
respective cameras’ pair. The final position of the sought target is calculated by the mean value of
the available spheres’ intersections.

4 Experimental Results

The proposed objects’ 3D position estimation method is evaluated through extended tests con-
taining several scenes. The tests were executed on a typical PC with a core2duo 2.2 GHz processor,
2 GB RAM and Windows XP operating system. Furthermore, the cameras used in the experi-
ments are able to capture images up to 1280x960 pixels resolution and are connected to the PC
via a firewire port. The lenses utilized are the C418DX manufactured by Pentax with 4.8mm focal
length. The data transmission is accomplished by using IEEE 1394b transfer protocol. Moreover, in
order to provide more realistic results we tested the proposed method in large scale environments,
where an autonomous robotic platform operates [13]. In addition, we used 20 different objects in
over 30 experimental setups. Moreover, in Table 1 the focal length, principal point and distortion
coefficients along with the respective errors, are presented. In the following section we seek to
present both qualitative and quantitative results.

4.1 Database Construction

The database is constructed while the system is off-line. Several objects from different view-
points and distances to each camera are captured and stored into it. The groundtruth measurements
are the distances of the objects as provided by a Bosch DLR165K Laser Distance Measuring De-
vice, which offers ± 1/16 inch accuracy. The goal of this process is to extract features that are
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Figure 4: The absolute error (in cm) increases as the object’s distance from the camera grows, in
instances where we hold only one training image per object.

(a) (b) (c)

(d)

Figure 5: The scene 1 containing eight different objects is captured from 4 different viewpoints
corresponding to camera 1 (5(a)), camera 2 (5(b)), camera 3 (5(c)) and camera 4 (5(d)). The objects
- targets are positioned on four desks.

scattered over the surface of the objects-targets. The constructed database contains specific feature-
distributions over the targets’ surface, which tally with the respective objects’ distances from the
cameras. Each object - target was captured at six different distances from the camera, namely 100
cm, 150 cm, 200cm, 300 cm, 400cm and 500cm. The view point capturing angles where 0◦, 90◦,
180◦ and 270◦, respectively resulting in 24 distinct instances for each object. Figure 4 illustrates
the gradation of the absolute error measured in cm, whilst the x-axis corresponds to the difference
between the trained and the current distance. Generally, this error increases parabolically with the
distance whilst it remains very low for distances below 100cm.

4.2 3D Position Estimation

In Figure 5, scene 1, which comprises of eight different objects captured by the multi-camera
system, is presented. The cameras are mounted onto four tripods and placed at predefined positions
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Table 2: The eight objects comprising the scene depicted in Figure 5 and their estimated distance
from the cameras (a,b,c and d) along with the respective ground-truth measurement.

( a ) Camera 1 ( b ) Camera 2
Object groundtruth measured accuracy groundtruth measured accuracy

desk 1 klaser 266 283.9 93.27% 294 267.6 91.02%
book-a 328 304.2 92.74% 350 322.9 92.26%

desk 2 paper 282 303.1 92.52% 240 248.1 96.63%
asus 348 323.5 92.95% 305 312.5 97.54%

desk 3 book-c 499 559.4 87.90% 468 414.2 88.50%
book-b 434 489.2 87.28% 396 352.9 89.12%

desk 4 book-d 474 408.3 86.14% 486 398.9 82.08%
coke 402 328.7 81.77% 420 514.2 77.57%

( c ) Camera 3 ( d ) Camera 4
groundtruth measured accuracy groundtruth measured accuracy

desk 1 klaser 487 434.2 89.16% 480 539.6 87.58%
book-a 422 468.0 89.10% 414 489.2 81.84%

desk 2 paper 479 523.1 90.79% 507 462.9 91.30%
asus 416 382.4 91.92% 451 412.9 91.55%

desk 3 book-c 256 274.1 92.93% 321 341.6 93.58%
book-b 320 292.9 91.53% 376 339.7 90.35%

desk 4 book-d 287 306.4 93.24% 278 261.9 94.21%
coke 351 397.3 86.81% 332 297.0 89.46%

forming, a rectangle with δ = 250 cm and κ = 650 cm. Moreover, all the sensors are laid at
the same vertical height (250 cm) and all the necessary spatial information was obtained during
callibration. The targets were laid on four desks as follows: ”book-a” and ”klaser” on desk 1;
”asus” and ”paper” on desk 2; ”book-b” and ”book-c” on desk 3 and ”book-d” and ”coke” on desk
4, respectively. Then, the online search engine took place and the results are presented in Table 2.
Eq. 13 represents the accuracy metric used.

accuracy(%) =

(
1− ‖ groundtruth−measured ‖

groundtruth

)
×100 (13)

The overall accuracy for estimating objects’ distances relatively to each camera has been re-
markable, giving a mean value of 89.83% with standard deviation (σ ) of 0.04. It is apparent that
the accuracy of the method is directly related to the actual object’s distance from the camera. More
specifically, the closer the object to the camera the better the estimation. By observing Table 2
one can verify the aforementioned fact, since best results correspond to objects closer to the sensor
(e.g. the distance of ”book-a” from the camera is more accurately estimated from camera 1 than
from camera 4). Another important aspect constitutes the fact that, both the size and the texture of
the sought object play an essential role in the calculation of its spatial information. For example,
location assignments for the target ”paper”, which is the largest object on desk 2, and ”asus”, which
is the most textured object placed on desk 2, are more effective due to the fact that their attributes
provide more features to extract. As a result, the greater the number of features the better their
distribution over the surface of the object. Since our method is mainly based on the key-points’
spread, enhanced distribution leads to more qualitative and quantitative results.

By now we have effectively estimated objects’ distance from the cameras, which in turn, delimit
several spheres centered at the sensor having a radius equal to the distance already calculated. It is
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Table 3: The proposed method aims at estimating the position of ”book-a” in the 3D space relative
to each camera’s frame.

Camera 1
(X,Y,Z) groundtruth (X,Y,Z) measured (X,Y,Z) accuracy

(95, 295, 146) (101.47, 316.41, 135.99) (93.19%, 92.74%, 93.14%)
Camera 2

(X,Y,Z) groundtruth (X,Y,Z) measured (X,Y,Z) accuracy
(155, 295, 146) (138.53, 328.51, 129.06) (89.37%, 88.64%, 88.40%)

Camera 3
(X,Y,Z) groundtruth (X,Y,Z) measured (X,Y,Z) accuracy

(155, 355, 146) (174.67, 306.89, 168.48) (87.31%, 86.45%, 84.60%)
Camera 4

(X,Y,Z) groundtruth (X,Y,Z) measured (X,Y,Z) accuracy
(95, 355, 146) (82.47, 284.99, 119.97) (86.81%, 80.28%, 82.17%)

Figure 6: The overall accuracy of the proposed method over the 3D dimensions (X ,Y and Z)
accumulating all utilized objects and through all the experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: 7(a) - 7(d) The second scene comprises of the same objects scattered at different positions
in the 3D space. 7(e) - 7(h) Scene 3 that is almost identical to scene 1 (Figure 5) contains one
additional object ”hp-box”, whilst in different geometrical constrains.
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(a) (b)

Figure 8: a) This scene (4) shows the integration environment of the ACROBOTER project. b)
The mean estimation error measured in cm in (X ,Y and Z) for the first scene of ACROBOTER’s
environment.

Table 4: The accuracy of the object’s distance estimation for the purposes of the ACROBOTER
project.

Camera 1 Camera 2
groundtruth measured accuracy groundtruth measured accuracy

635 618.4 97.38% 510 485.6 95.21%
Camera 3 Camera 4

groundtruth measured accuracy groundtruth measured accuracy
350 365.9 95.65% 530 455.7 85.98%

apparent that the aforementioned sphere surface represents the geometrical locus in the 3D working
environment, in which the object is positioned. Consequently, after applying the mathematical
formulae corresponding to spheres’ intersections that are presented in Section 3, we are able to
estimate any recognized object’s location in the 3D space in terms of absolute X,Y,Z positions. The
most important issue that arises is that the latter represent absolute measurements relative to each
camera’s coordinate system. As an example, we present the accuracy of the proposed method in the
particular experiment of scene 1 (Figure 5) concerning the object ”book-a” in Table 3. Once again,
the accuracy of the method remains remarkable, since its mean value is 87.76%, which corresponds
to a mean error around 26 cm (maximum 70 cm and minimum 6.47 cm measured at Y and X axis,
respectively).

Scene 2 depicted in Figures 7(a) - 7(d) is similar to scene 1, as it contains the same objects, but
the latter placed at different locations. Moreover, the almost same objects (”klaser” was substituted
by ”hp-box”) are utilized for the shake of the next scene presented in Figures 7(e) - 7(h). The
yield of the proposed method remains high: In Figure 6 we present the mean accuracy on each axis
(X ,Y,Z) for all the objects used throughout the series ofl experiments.

The work presented in this paper was thoroughly tested during the final integration and review
meeting of the ACROBOTER research project [5]. The ACROBOTER project developed a radically
new locomotion technology, which can be used in a home and/or in a workplace environment for
manipulating small objects autonomously. Scenes 4 (Figure 8(a)), 5 (Figures 9(a) - 9(d)) and 6
(Figures 9(e) to 9(h)) respectively, represent the working space of the ACROBOTER captured by
the corresponding cameras. Here, the cameras were placed on the ceiling grid forming a rectangular
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Scenes 5 (9(a) - 9(d)) and 6 (9(e) - 9(h)) contain the ”fingerprint” and ”chess box” objects
positioned at different places.

grid with δ = 440 cm, κ = 620 cm and height 320 cm. The pictures were captured during the
aforementioned integration meeting with the illumination changing dramatically throughout the
day. The objects presented in the following experiments correspond to a rectangular box covered
with a chess pattern, used for calibration, and to a less rigid textured target looking like a large
fingerprint (shown only in Figure 9). Our method was able to estimate objects’ distance from
the camera in scene 4. As far as the ACROBOTER’s set of experiments are concerned, these are
characterized by better system’s accuracy compared to scenes 1, 2 and 3. One important issue
that should be kept in mind is the fact that camera’s 4 field of view represents a fully cluttered
environment with a large trussing in front. This results in a slightly decreased accuracy (see Table
4 - camera 4). Nevertheless, despite of this, the overall accuracy of the proposed framework is not
seriously affected. Finally, we introduce Figure 8(b) depicting the mean estimation error (in cm).
It can be easily observed that the proposed method’s error is found at very low levels, with the
maximum error laying on the Y axis. The latter should be expected since the transpose on the Y
axis is greater than the respective transposes on X and Z axes, due to the fact that it incorporates κ ,
which was significantly bigger than δ in the particular working environment.

All the aforementioned scenes suffer from several illumination discrepancies due to both the
working environment’s texture quality and the attributes of the lighting source. More specifically,
almost all the captured images contain instances where reflectance phenomena produce over and
under exposed regions. In order to increase the proposed method’s robustness against illumination
changes we appraised the image enhancement algorithms presented in Section 2. In our framework,
these methods pre-process several input images to produce an enhanced one. Through the following
experimental set, scenes 1 to 6 along with objects’ training photos, are considered as input images,
whilst the overall goal is to enhance our system’s efficiency. In Figure 10(a), we present an ana-
lytical centralized chart that includes the actual influence of the aforementioned algorithms in the
proposed 3D location estimation scheme, which is referred as INITIAL. In almost all instances, the
pre-processing step does enhance our system’s efficiency and by-passes difficulties in challenging
illumination circumstances. ORASIS constitutes the most effective solution since its adoption as a
pre-processing step results in proposed method’s accuracy about 92%. A slightly reduced accuracy,
compared to ORASIS, is provided by the MSRCR algorithm. The overall affect of each algorithm
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(a) (b)

Figure 10: a) The accuracy of the 3D position estimation method increases using CLAHE, FLOG,
MSRCR, ORASIS and the SAPONARA methods as a pre-processing step. b) Absolute error’s (in
cm) variation after adopting several image enhancement algorithms. INITIAL corresponds to the
proposed 3D position estimation method without adopting any pre-processing technique for image
enhancement.

over the proposed method can be apprehended by calculating the mean estimation error. The posi-
tive effect of the ORASIS algorithm is verified by the results depicted in Figure 10(b). Generally,
all the image enhancement methods have a positive affect on our approach, since the absolute error
is drastically reduced. The overall error of the proposed 3D position estimation method measured
in cm is generally acceptable. The contribution of the ORASIS as a pre-processing step, enhances
our algorithm’s robustness against large local and global contrast modifications.

5 Conclusions

In this paper we have presented a novel method for estimating objects’ location in the 3D space
by exploiting spatial information derived through recognition and the utilization of a sophisticated
multi-camera system. This approach excels in simplicity and computational cost, whilst its database
can be easily modified for the needs of multiple-object recognition and location assignment. Exper-
imental results provide credit to our claim that once the object is recognized its distance from each
camera can be easily estimated through the calculation of the features’ distribution over the sought
target’s surface. Moreover, the algorithm requires an object to be recognized by more than two
different viewpoints in order to effectively estimate its location relatively to the multi-camera array.
Occlusions do not affect the efficiency of the method, unless the visibility of an object is limited
to one sensor only. The multi-camera system used is able to cover 97% of the working volume of
the testing room. The proposed method was successfully tested in a realistic scenario. In conclu-
sion, larger and more textured objects are more likely to be successfully recognized and spatially
registered in the 3D space. On the other hand, the proposed method’s accuracy drops in cases of
small objects or even textureless targets, due to the fact that there is a limited features’ spread over
the objects’ surface. Furthermore, due to the fact that illumination conditions affect directly the
efficacy of the system, we tested several image-enhancement methods as a pre-processing step to
the proposed 3D position estimation method. The ORASIS method, was favored due to the fact that
it incorporates both global and local contrast modification, which lead to enhanced image quality.
In addition, by adopting this method, we noted a remarkable decrease of the proposed method’s
estimation error.
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