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a b s t r a c t

In this paper we propose a novel method for object grasping that aims to unify robot vision techniques for
efficiently accomplishing the demanding task of autonomous object manipulation. Through ontological
concepts, we establish three mutually complementary processes that lead to an integrated grasping sys-
tem able to answer conjunctive queries such as ‘‘What’’, ‘‘Where’’ and ‘‘How’’? For each query, the appro-
priate module provides the necessary output based on ontological formalities. The ‘‘What’’ is handled by a
state of the art object recognition framework. A novel 6 DoF object pose estimation technique, which
entails a bunch-based architecture and a manifold modeling method, answers the ‘‘Where’’. Last,
‘‘How’’ is addressed by an ontology-based semantic categorization enabling the sufficient mapping
between visual stimuli and motor commands.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Contemporary vision-based robotic systems tackle the object
manipulation problem by extracting appearance features that are
to be matched with the ones already contained in the training
dataset (Wang, Tao, Di, Ye, & Shi, 2012). However, these systems
fail to generalize to objects not included in the training set, whilst
they are highly depended on the architecture of the respective
robotic platform. It is apparent that a beyond the state of the art
methods for automatic object grasping, e.g. targets placed on a
conveyor belt, should: (i) be capable of manipulating any object
offering large generalization capacities; (ii) be based on low
dimensional input vectors, thus, resulting to minimum system
complexity; (iii) execute in real-time and (iv) be invariant to the
robot’s architecture (Da Xu, Wang, Bi, & Yu, 2012).

Similar to any other robotic task, the human hand-gripping out-
perfomers any robotic grasping system and remains the ultimate
standard. The brain and hand are the two primary determinants
of the human grasping action and attempting to separately imitate
each of them when trying to reproduce this polymodal task proves
to be insufficient. Consequently, any interaction between them in
terms of knowledge requirements and reasoning capabilities
should be sought (Liu, 2011). The problem of shape extraction with
non discriminative local features for object grasping was analyzed
in Ying, Fu, and Pollard (2007), by synthesizing humanlike
enveloping grasps and utilizing a shape matching algorithm.
Such approaches attempt to answer certain questions based on
the different constraints, e.g. one might possess specific knowledge
of where the graspable part is, yet the question of how to grasp it
remains. In fact, trying to answer solely each of the three questions,
namely What, Where, and How, leaves out critical semantic con-
straints that affect the whole context of the object grasping action.
Even for tasks where the object to be grasped is known, depending
on the operational scenario, different semantic constraints are
introduced. The latter determine the way the object will be
grasped according to the affordances and the attributes the specific
task exhibits. For example, the way a pencil is held is different for
writing than for sharpening it. Hence, the question ‘‘what is the
object to be grasped?’’ is not sufficient to complete the action, but
the answer depends also on how exactly the object is expected
to be used (Bicchi, 2000).

Bin-picking stands for one of the most widely encountered
industrial applications where robots are asked to automatically
manipulate similar objects usually placed in bins or boxes.
Severe occlusions, foreground clutter and large scale changes are
among the cascading issues that put additional barriers to this
challenging problem. Liu et al. (2012) presented a chamfer
matching-based solution that extract depth edges via a
multi-flash camera, while Sansoni, Bellandi, Leoni, and Docchio
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(2014) showed how a laser source scanning architecture can facil-
itate accurate pose estimation. In Buchholz, Kubus, Weidauer,
Scholz, and Wahl (2014) inertial and visual data are fused to calcu-
late grasp poses of testing objects (Kuo, Su, Lai, & Wu, 2014). In
turn, in Nieuwenhuisen et al. (2013) and Buchholz, Futterlieb,
Winkelbach, and Wahl (2013) 3D descriptors (shape-based and
spin images, respectively) are extracted from RGB-D input data
and fed to nearest-neighbor classifiers to acquire accurate recogni-
tion and pose estimation results.

In this paper, we aim at providing a consolidated architecture
for automatic grasping tasks, which can provide answers to the
next questions: ‘‘What is the item?’’, ‘‘Where is the item placed?’’
and ‘‘How can I manipulate it?’’. Thereupon, we assess a
shape-based methodology for the recognition task and we acquire
exact detection results via a Bag-of-Features classification proce-
dure. In addition, the pose estimation module relies on the notion
that even unlike objects when perceived under similar perspec-
tives should hold respective similar poses. Grasping points are
Fig. 1. The proposed architecture aims at providing an efficient solution to the autonomo
during the recognition, pose estimation and grasping point calculation tasks.
determined by means of an ontology, where the recognized objects
inherit accurate grasping coordinates from the relevant class. The
proposed ontology includes: (i) object-class associated data, (ii) a
pose manifold for each instance of the object-class conceptual
model and (iii) the grasping points information of any trained
instance. The basic concept of this procedure is depicted in Fig. 1.

Our main contributions can be summarized as follows:
Compared to the state of the art works in object recognition and
pose estimation (Brachmann et al., 2014; Bonde, Badrinarayanan,
& Cipolla, 2014; Hinterstoisser et al., 2011; Lim, Khosla, &
Torralba, 2014; Tejani, Tang, Kouskouridas, & Kim, 2014;
Wohlhart & Lepetit, 2015) our method offers higher generalization
capabilities through the recognition of objects that do not have to
belong in the training dataset. Additionally, our sophisticated man-
ifold modeling technique builds compact and object-class invariant
manifolds that are not prone to occlusions. Moreover, the paper
in hand represents the first integrated research attempt in
industrial-centric ontologization focusing on the liaison between
us unknown object manipulation problem by addressing the challenging issues risen
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image understanding algorithms and the corresponding motor
commands in the particular task of unknown object manipulation.
Despite the continuous research developments on ontology-based
frameworks for image retrieval, web indexing or even robotics,
very limited activity in industrial object manipulation is discerned.
Additionally, our method is invariant to the robotic architecture or
the distinctive parts used, whilst exhibiting real-time performance.
Moreover, the proposed system can be easily adopted and
expanded with view to manipulate any variety of objects belonging
to different classes without additional training on new targets.

The rest of the paper is organized as follows. In Section 2, we
discuss the related work on the three separate cores of our archi-
tecture. In Section 3, we demonstrate the methodology of explor-
ing and answering the three primary constraints introduced. In
Section 4, we exhibit the experimental results and compare the
performance of the proposed framework with other widely used
grasping systems through qualitative measures. Finally, we draw
concluding remarks in section 5.
2. Related work

Sensorimotor architectures for object grasping try to address
the challenges risen by making significant progress in several lay-
ers of abstraction (Bannat et al., 2011). While different architec-
tures and systems have been proposed, the main core systems
are common; improvements are made in either the core systems
or their reciprocal engagements (McGuire et al., 2002; Wang,
Ren, Mills, & Cleghorn, 2010). The next subsections present the
related work based on the highest layers of our core system, with
special emphasis on their mutual interactions.
2.1. Object recognition using content based image retrieval techniques

In the past, content based image retrieval (CBIR) techniques
have been adopted in robot grasping systems to facilitate object
recognition (Kragic & Christensen, 2003; Steil, Röthling, Haschke,
& Ritter, 2004) while they are distinguished into two categories,
depending on whether they employ global features (GFs) or local
ones (LFs). GFs, are the ones describing the content of an image
in a holistic manner and the information described by them con-
cerns either the color, the shape, or the texture of an image
(Manjunath, Ohm, Vasudevan, & Yamada, 2001). Despite the fact
that in applied research, image retrieval often relies on global fea-
tures, at least as a foundation for further research (Chatzistavros,
Chatzichristofis, Zagoris, & Stamatelos, 2015), they often lead to a
query sensitive holistic description of the visual information. In
other words, image retrieval using global features is notoriously
noisy for image queries of low generality, i.e. the fraction of rele-
vant images in a collection. Image retrieval methods employing
global features typically rank the entire collection using some dis-
tance measure. Revisiting the example from Arampatzis, Zagoris,
and Chatzichristofis (2013) and Papadopoulos, Kalogeiton,
Chatzichristofis, and Papamarkos (2013), a query image of a red
tomato on white background would retrieve images from the col-
lection that illustrate e.g. a red pie-chart on white paper. In other
words, if the collection does not contain visually similar to the
query images, early rank positions may be dominated by spurious
results such as the pie-chart, which may even be ranked before
tomato images on non-white backgrounds. In conclusion, global
features are able to retrieve only images with similar visual prop-
erties in a holistic way.

On the other hand, retrieval systems which employ LFs, extract
the content of an image on a set of ‘Points of Interest (POI)’, each of
which is described using a feature vector invariant in scaling and
rotation. The replacement of GFs by LFs, slightly improves the
retrieval effectiveness when searching for images with similar
visual and conceptual content (Aly, Welinder, Munich, & Perona,
2009; Iakovidou, Anagnostopoulos, Kapoutsis, Boutalis, &
Chatzichristofis, 2014). Additionally they equip the respective sys-
tems with the capability of identifying objects in cases of occlusions
or cluttered backgrounds. Yet, the problem of a system based on LFs
is its computational burden. Hence, modern approaches combines
LFs’ effectiveness with GFs’ efficiency. Such an approach is the
Bag-of-Features (BoF) -or Bag-of-Visual-Words-model, which orig-
inates from the well-known Bag-of-Words paradigm and is
regarded as a ‘‘promising framework for CBIR’’ (Ren, Collomosse, &
Jose, 2011). This model has also been applied in other robotic appli-
cations (Kostavelis & Gasteratos, 2013), mostly due to: (i) its better
retrieval effectiveness over GF representations and (ii) its better
efficiency than LF representations. In the proposed method, the
object is classified under one of the classes used to train our system.
We use the BoF model to classify an object captured by a single dig-
ital camera in one of the predefined classes, by adopting character-
istics from the method proposed in Chatzichristofis, Iakovidou,
Boutalis, and Marques (2013). The object is captured at angle c
and distance d (the distance between the center of the camera
and the object’s centroid), both of which are neither constant nor
predefined. Thus, the system is expected to identify a 3D object
by a 2D projection of it.

2.2. Pose estimation

The adequate implementation of robotic manipulation tasks
necessitates the accurate estimation of the 6 DoF pose of the test-
ing object (Kouskouridas, Amanatiadis, & Gasteratos, 2011;
Kouskouridas, Charalampous, & Gasteratos, 2014; Popovic et al.,
2010; Sansoni et al., 2014). The simplicity along with facile training
sessions render template matching methods as one of the most
widely used solutions for object detection tasks (Ferrari,
Tuytelaars, & Van Gool, 2006; Hinterstoisser et al., 2011; Ma,
Chung, & Burdick, 2011; Rios-Cabrera & Tuytelaars, 2013; Tejani
et al., 2014). However, the main drawbacks of such techniques
are their sensitivity to occlusions and the respective laborious
training sessions. Point-to-Point techniques build object models
as pairs of points extracted on point clouds (Drost, Ulrich, Navab,
& Ilic, 2010). More recently, Brachmann et al. (2014) introduced
a new representation in form of a joint 3D object coordinate and
class labeling, which, however, suffers in cases of occlusions.
Song and Xiao (2014) proposed a computationally expensive
approach to the 6 DoF pose estimation problem that slides exem-
plar SVMs in the 3D space, while in Bonde et al. (2014) shape priors
are learnt by soft labeling random forest for 3D object classification
and pose estimation. In turn, part-based approaches focus on
learning distinctive object models from wide training collections
to strive the partial occlusion challenge. Constellation architec-
tures (Cao, Ning, Yan, & Li, 2012) are regarded as an extension of
part-based ones since they apply similar strategies to connect dis-
tinguishable areas of the object. Although plenty of solutions for
object registration exist, to the best of our knowledge, there is
hardly any algorithm combining sufficient robustness and low
computation load.

In this paper, the 3D object pose estimation is based on a cus-
tom manifold modeling technique by means of ellipse fitting. We
consider our technique as a mixture of template matching and
part-based approach. A similar study (Hinterstoisser, Benhimane,
& Navab, 2007) suggests that the 3D pose of an object can be recov-
ered through the extraction of 4 or 5 neighboring primary points
with equal distribution over the object’s surface. However, this
approach results to non-compact and occlusion biased pose mod-
els. Another close work, the statistical manifold modeling of Mei,
Liu, Hero, and Savarese (2011), which is considered to be a
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benchmark in manifold fitting, enables accurate registration of
objects in their 3D environment. However, the learnt manifolds
are based on two additional operations to address intra-class min-
imization and inter-pose maximization. Moreover, this work
makes use of a limited training dataset, thus restricting the pose
recovery to only one class.

2.3. Ontologies

The process of linking knowledge derived from complex images
to specific primitives with semantic meaning forms an intriguing
research topic. From medical image annotation (Hu,
Dasmahapatra, Lewis, & Shadbolt, 2003) to image retrieval and
classification (Mezaris, Kompatsiaris, & Strintzis, 2003), ontological
frameworks provided assistance in machine-based reasoning of
the acquired data. In computer science, ontologies, as introduced
in Gruber (1993), aim at adding semantics with a view to specify
the meanings of annotations. Essentially, an ontology represents
a data-driven model representing both the underlying framework
and the individual instances along with their definitions of a par-
ticular domain. In the field of computer vision, ontologies are not
yet mature enough and they are adopted primarily for image
retrieval tasks and object classification (Chen, Li, & Kwok, 2011),
whilst in the particular task of object manipulation ontologies
were employed to allow an efficient object classification along
with the respective grasping points (Kouskouridas, Retzepi,
Charalampoglou, & Gasteratos, 2012; Vorobieva, Soury, Hède,
Leroux, & Morignot, 2010). However, both the aforementioned
works fail to generalize to unknown (untrained) objects, whilst
requiring adequate knowledge of the working environment of
the robot. In other robotics applications ontologies are utilized
with view to provide a more compact representation of the 3D
objects (Varadarajan & Vincze, 2012) and to study the relation
between specific models and the corresponding robot action
(Modayil & Kuipers, 2007). In this paper, the ontologies are utilized
in an holistic manner with aim to establish a novel knowledge
domain focusing on industrial object manipulation.
3. Methodology

The principal concepts of the proposed method are illustrated in
the block diagram of Fig. 2. Initially, we collect images of objects
contained in large databases dedicated to shape classification and
3D pose recovery. The generalization potential of the method is
boosted by accumulating sufficient images of various objects, along
with the respective shape silhouettes captured from varying view-
points. We aim at building ontological concepts able to assist
grasping by facilitating ‘‘what’’; ‘‘where’’ and ‘‘how’’. Thereupon,
we employ: (i) an object recognition module, answering to ‘‘what’’;
(ii) a 6 DoF object pose estimation technique, replying to ‘‘where’’
and (iii) a grasping point calculation algorithm, solving the
‘‘how’’. We accumulate the outcome of the aforementioned individ-
ual modules in an ontology, in which each recognized object is
accompanied by a 3D pose measurement and a set of grasping
points.

3.1. Object recognition – What?

Our object recognition module aims at producing accurate iden-
tification results, while its underlying idea mimics the properties of
the BoF model. The latter suggests dividing the whole procedure
into two discriminative phases, viz. the training and the retrieval
one. During the training phase, LFs are extracted from the database
images. Let R, represent a set of randomly selected features that are
classified into m classes, using a well established classifier. The
center of each cluster represents a visual word, while the total
set of the words – classes in our approach – define the ‘‘codebook’’.

In turn, during the retrieval phase, LFs extracted from each sin-
gle image are,then classified as per the classes generated during
training. We adopt a soft-labeling architecture that allows each
of the extracted LFs to be classified in more than one class. By
the end of this procedure, each image is represented by a vector
of m positions, each of which includes the number of LFs belonging
to the class. We equip our recognition module with beyond the
state of the art properties by adopting and enriching the method
proposed in Chatzichristofis et al. (2013). Towards this end, a num-
ber of R features are randomly selected from the database and for-
warded into a self-growing, self-organized neural gas network to
calculate the most appropriate size of a codebook.

The resulting descriptor is formed by simultaneously employing
each LF by two distinguished units. The first one is responsible for
classifying the LF to a single class among the m ones calculated
during training while assigning a participation value to it. The sec-
ond unit describes the color of the LF’s surrounding area using two
fuzzy linking systems. This unit employs a 24-color palette to
describe a color. The combination of the two units classifies the
LF into at least one of the m� 24 positions of the descriptor.
Regarding the retrieval procedure the Term Frequency Inverse
Document Frequency (TF-IDF) is used as the weighting scheme.
The proposed recognition method has been chosen for the follow-
ing reasons:

� It was tested in an object database and managed to present the
best results among 15 descriptors
� The size of the codebook is automatically computed.
� To the best of our knowledge, this is the first method using color

information in early fusion with visual words for object
grapsing.
� Irrespectively of the database size, there is no need to consider

weighted and/or similarity measure schemes.
� It exhibits good results in retrieving images from long docu-

ments, i.e. it can identify the presence of an object which
matches to the query, even when it belongs to a cluttered
image.
� It ensures high retrieval rates even in scaling changes and rota-

tion variations.

One of the key issues in the design of such a grasping system
is the database formation. Widely used databases were enriched
with additional objects, one hundred instances of which were
recorded in the database under controlled external conditions
and different capturing viewpoints. The camera is placed at dis-
tance B from the object’s centroid on the plane formed by the
XY axes of the reference frame (placed at the center of the object)
and is rotated with respect to the Z axis. Each object is captured
every 36�, thus taking a total of 10 images. Next, the object is
rotated clockwise by 36� on the Z axis and the camera repeats
the same procedure as before. The overall routine concerning
both the camera and the object is repeated, using a 36� step, until
a complete rotation of the object around the Z axis is performed.
It is therefore straightforward to note that, the smaller the rota-
tion step, the better the results. The rotation step chosen is a
trade-off between the database computational burden and the
high retrieval rate scores.

During the system’s operation, the object to be identified is cap-
tured and defined as the query object. The respective LFs are
extracted and the vector describing the contents of the image is
produced. The distance between this vector and the ones stored
in the database is calculated. Since the database includes single
objects, the query captured image, i.e. the one having the smaller
distance from the database objects, is classified.



Fig. 2. The proposed methodology in a block diagram format.
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3.2. 3D pose estimation – Where?

Our 6 DoF object pose estimation module can be apprehended
as a generalization of the hypothesis presented in the previous sec-
tion. The proposed method can be divided into two discriminative
phases standing for the building of the part-based architecture and
the manifold modeling one.
3.2.1. Part-based architecture
It is well understood that modeling objects as a collection of

parts increases robustness to intraclass variation, pose change
and even occlusion. The implicit shape model, introduced by
Leibe, Leonardis, and Schiele (2004), learns, via unsupervised clus-
tering, class-specific visual codebooks and spacial distributions for
each entry. Codebook entries are then detected in the test image
and used to cast probabilistic votes in the Hough space based on
the learnt spatial distributions. Moreover, Gall, Yao, Razavi, Van
Gool, and Lempitsky (2011) showed, with the class-specific
Hough forest, how part-based modeling can be effectively com-
bined with generalized Hough voting for object detection under
the random forest framework.

We propose a novel method which compared to the aforemen-
tioned works requires less supervision and focuses on describing
features representing both texture and geometrical attributes.
Towards this end, SURF (Bay, Ess, Tuytelaars, & Gool, 2008) is used
to abstract initial appearance-based characteristics, which are then
processed by an homography-based RANSAC (Fischler & Bolles,
1981) to keep the most robust ones.

The geometrical attributes are aggregated by employing the
K-means algorithm over the locations of the texture-based fea-
tures. First, we select b primary points from image I that contains
an object o with pose p and mark them as Iðvb; ojpÞq; v 2 R2.
Furthermore, we keep only the locations u 2 R2 of the b extracted
features. The latter form set K that is further processed by
K-means to calculate the respective clusters centroids that are
from now on denoted as S ¼ hl̂K; ojpi.
3.2.2. Manifold modeling – template matching
In theory manifold modeling and its further application of

alignment, stands for a sophisticated approach to establish a
similarity measure between two separate subspaces. As indicated
by the benchmark work of Mei et al. (2011), objects when modeled
as feature vectors of low dimensionality can be projected onto
highly discriminative subspaces facilitating, thus, their accurate
registration in the 3D environment. More recently, Pei, Huang,
Shi, and Zha (2012) suggested how affine transformation can serve
as a manifold-to-manifold distance measure to align the embedded
motion patterns.

Compared to the state of the art of our manifold modeling archi-
tecture extract feature vectors of low dimensionality, i.e. 5 DoF’s
(location, scale, shape and orientation – similar to an ellipse in
the Euclidean space). Let r represent the feature vector that
spans our modeled manifold. Moreover, we assume that r ¼
½a; b; c; d; �; f�, meaning that the members to be computed are
equivalently represented by an ellipse hðrÞ ¼ aX2 þ bXY þ cY2þ
dX þ �Y þ f ¼ 0 in the Cartesian space. Here where ðX;YÞ corre-
sponds to the collection of points of hðrÞ. To adequately fulfill the
modeling process we propose a cost function minimization prob-
lem that is solved through PSO (Eberhart, Shi, & Kennedy, 2001):

H ¼ 1
K
XK
w¼1

kS � hk2 ¼ 1
K
XK
w¼1

khl̂w; ojpi � hðrÞk2 þ k
X5

j¼1

ðr jÞ2 ð1Þ

The last member of the cost function of Eq. (1) is a regularization
factor experimentally set to k ¼ 0:1, which is added over a to � (f
is a bias).

Moreover, let f s represent the two foci of the estimated ellipse on

the Cartesian space according to f s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
majoraxis2 �minoraxis2

q
.

We model the pose manifold for object o with pose p as the L2 dis-
tance between the extracted l̂K clusters from the two foci of the
ellipse:

x ¼ kf � Sk2 ¼
X2

s¼1

XK
w¼1

ff s � hl̂w; ojpig2 ð2Þ

As a follow-up step we utilize a RBF-based regressor to find the
correct mapping from a set of input variables x 2 X (pose space) to
an output variable y ¼ yðx; hÞ 2 Y, where h corresponds to the vec-
tor of the tunable parameters. The used datasets are CVL (Viksten,
Forssén, Johansson, & Moe, 2009), COIL-100 (Nayar, Nene, &
Murase, 1996), as well as a set of artificially rendered objects



Fig. 3. Depending on the object class category, the grasping fGg and the object frames fOg might differ (e.g. a cup) or coincide (e.g. a car).
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available on-line,1 which are shot every 5�. In contrast to other
related works, we do not utilize conventional dimensionality reduc-
tion schemes, e.g. PCA prone to the inevitable loss of information.
The size of the training set is [2 � l̂K � 100;000], that is 1000 image-
s/object. The number of the extracted clusters l̂K was experimen-
tally set to 8, which exhibited the lowest generalization error.

3.3. Grasping points – How?

Our grasping point calculation module takes into account infor-
mation derived from both the recognition and 3D pose estimation
frameworks. In most of the cases, an accurate estimation of the 3D
pose of an object is sufficient for the ample accomplishment of
manipulation tasks, since the robotic arm can be configured
according to the provided 6 DoF measurements. However, in this
paper we aim at enhancing our system by introducing grasping
capabilities, so as a cup to be grasped by its handle but a toy-car
about its center of mass. We believe that, this property increases
the efficiency of the proposed system, making it appropriate for
smart industrial applications. As Fig. 3 illustrates, the positions of
the object frame fOg and the grasping one fGg are directly related
to the class of the recognized object.

In more detail, the grasping points of cars and 4 legged animals
are their center of mass, which are efficiently computed by finding
the center of the respective fitted ellipse. On the other hand, cups
and mugs imply different grasping points. Towards this end, let the
transformation TCO, describing the pose of the recognized object
fOg relatively to the camera frame fCg to be denoted as:

TCO ¼
RCO DCO

0T 1

� �
2 SEð3Þ

where RCO and DCO represent the rotational and translational
parameters (6 DoF) and are provided by the 3D pose estimation
module presented in the previous Section 3.2. It is apparent that,
an additional transformation TOG is required to efficiently describe
the spatial relationship between fOg and fGg. Let DOG and ROG rep-
resent the translation and rotation matrix describing the orienta-
tion of the frame of the grasping point fGg relatively to the object
frame fOg. Then the transformation TOG can be denoted as:

TOG ¼
ROG DOG

0T 1

� �
2 SEð3Þ

The recognition module provides specific grasping information
that should be taken into account for the calculation of the grasp-
ing points. Apart from the identity of the sought object we hold
data regarding its nature, i.e. the existence and the position of a
handle, which is defined as the one that produces the best match
along a series of comparisons for the same object class. Since the
1 http://www.evermotion.org.
accurate location of the handle is known, we can calculate the
ROG 2 SEð3Þ describing the orientation of the handle relative to
the center of mass of the object. Finally, the transformation
between the grasping point of the object and the camera is deter-
mined as:

TCG ¼ TCO � TOG ð3Þ
3.4. Ontology-based grasping

The proposed architecture utilizes a knowledge-based informa-
tion acquisition framework that consists of ontological concepts
representing the three separate modules introduced so far. The
employed ontology is structured as a graph, where each node rep-
resents an ontological concept and edges inter-relationships
between them. An inter-relationship E between concepts Di and
Dj implies that there exists an inverse liaison E0 between Dj and Di.

A graphical representation of the proposed Ontology is depicted
in Fig. 4, where the three general ontological concepts ‘‘What’’,
‘‘Where’’ and ‘‘How’’ are shown. Through the respective module of
object recognition we determine the ‘‘What’’ ontological concept
and its members (a testing object might either be a car, a cup or
a 4-legged animal). Additionally, pose manifolds established via
the respective pose estimation module, characterize the ‘‘Where’’
ontological concept that holds information regarding the 6 DoF
geometrical configuration of the sought object. Finally, the attri-
butes of the ‘‘What’’ and ‘‘Where’’ concepts are taken into account
to generate the ‘‘How’’ hypothesis, which provides estimations
about the grasping points of the respective objects. In this particu-
lar example, the testing target is firstly classified as a cup, which in
turn, implies that its grasping point is derived through the ontol-
ogy. Essentially, the proposed framework suggests that a novel
object can be adequately manipulated after it has been initially
recognized and afterwards assigned with a 6 DoF grasping point
vector (see Fig. 5).

4. Experiments and discussion

The proposed framework was evaluated through a series of
experiments to assess its performance in the particular task of
grasping novel objects and its potential for industrial applications.
Throughout these experiments we utilized ‘‘open loop’’ grasps that
imply the uncontrolled movement of the robotic arm to the respec-
tive grasping point together with the closure of the fingers.
Additionally, similar to Ulbrich et al. (2011), a candidate grasp is
considered as successful in cases where it is a Force-Closure (FC)
one, i.e. ‘‘if and only if we can exert, though the set of contacts, arbi-
trary forces and moments on the object’’ (Nguyen, 1986). Practically,
Force-Closure grasps suggest that there exist equilibrium due to
zero force and moments on the object, that in turn, can be trans-
lated as having the testing object grasped by the robotic gripper

http://www.evermotion.org


Fig. 4. (a) The ‘‘What’’, ‘‘Where’’ and ‘‘How’’ ontological concepts along with their interconnections; (b) A small portion of the constructed Ontology, where in this particular
example, the Grasping_Point concept holds data regarding the 6 DoF pose of a cup in order to facilitate the efficient accomplishment of object manipulation tasks.
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in a way that the likelihood of a fall to be minimized. We evaluated
the performance of our approach on several novel objects belong-
ing to the categories of cars, cups and 4-legged animals, respec-
tively, whilst utilizing the SCORBOT-ER Vplus arm, a vertical
articulated robot with 6 DoFs and a standard gripper. For the
choice of the particular arm the main criterion was the existence
of several industrial robotic systems with similar setup.

The efficacy of the proposed grasping point estimation module
is directly related to the performance of the object recognition and
pose estimation modules. Therefore, it is proper to state that in
order to efficiently fulfill manipulation tasks, our method should
cope with several computer vision challenges. Viewpoint changes
and partial occlusions significantly affect the performance of the
system. Contrary to humans, who are capable of simultaneously
recognize and estimate the pose of a target in difficult conditions,
robot vision applications fall short to achieve such robust
responses. Towards this end, we have initially assessed the effi-
ciency of the proposed method in cases where the testing object
is either partially occluded or perceived by different perspectives.
Experiments performed on the UkBekch database (Nister &
Stewenius, 2006). Table 1 shows that our recognition module is
capable of providing accurate estimations regardless of the view-
ing perspective and any partial occlusion, primarily due to the
training with the BoF model. In these series of experiments the



Fig. 5. The proposed method is capable of providing accurate grasping point estimations that enable the adequate manipulation of either a car or a cup. Here the fitted ellipse
utilized through the manifold modeling process is shown with a blue line, while the purple dot is the grasping point computed.

Table 1
Precision levels of the proposed retrieval approach for objects observed under altering
viewpoints or disturbed with partial occlusions.

Object MAP P@1 P@8

Cow 0.9665 1.0000 0.9330
Car 0.7998 0.9286 0.7210
Cup 0.7163 1.0000 0.6741
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testing object is shot every 45�, rather than 36�, in order to assess
the dynamic potential of the proposed framework. The 8 images of
the object, without any partial occlusion, are considered to be the
ground truth, which in turn lay in the range of [0–50]. Partial
occlusions are generated with a black rectangle of random size
being arbitrarily overlaid on the surface of the testing object.
Additionally, query images with partial occlusions over the surface
of the object were introduced to the proposed architecture to pro-
duce the results shown in Table 1. To evaluate the effectiveness of
the proposed approach we used the precision-at-K (P@K, K ¼ 1 for
the first result and K ¼ 8 for the first 8 positions) evaluation
method as well as the Mean Average Precision (MAP) one. The trec
files that include the detailed ranking lists of the experiments are
available online. While other vision systems are highly affected
by the common disturbances, our method is capable of providing
accurate estimations about the grasping point of a novel object,
thus enabling its adequate manipulation.

The comparative study and evaluation of different manipulation
systems has always been of fundamental importance in the field of
robotics research, while a sound benchmarking framework has not
been realized yet. The variety of the hardware available, e.g. several
Table 2
Qualitative comparison of related frameworks.

Framework Robotic hand/arm utilized Object
recognition/generalization
capabilities

Hsiao et al. (2010) PR2 personal robot No
Curtis and Xiao

(2008)
Barrett hand/PUMA arm No

Madry et al. (2012) Barrett hand/PUMA arm Yes/high
Chiu et al. (2010) Barrett hand/Barrett arm Yes/limited
Proposed method SCORBOT-ER Vplus arm Yes/high

Boularias et al. (2011) Barrett hand/Mitsubishi
PA-10 arm

No

Richtsfeld and Vincze
(2011)

OttoBock hand/AMTEC
arm

Yes/limited

Saxena et al. (2008) STAIR I/STAIR II No
Huang et al. (2012) PUMA 500 Yes/limited

The proposed architecture is presented in bold letters.
robotic arms and hands, together with the application dependent
software make a comparative evaluation almost impossible, still
it can be coarsely distinguished into hardware-based and
software-based studies (Michel, Bourquin, & Baillie, 2009).
Regarding the first category, robotic arms and hands are evaluated
through their recorded efficiency to facilitate complex manipula-
tion tasks based on their dexterity and their DoFs. According to
Michel et al. (2009) software-based, comparative testing is to be
exhibited via simulation by means of assessing the efficacy of the
respective algorithms in the particular task of object manipulation.
In this paper, we adjust the technique of Michel et al. (2009) by
performing a more qualitative rather than quantitative compara-
tive evaluation of highly related contemporary systems. Towards
this end, we introduce Table 2, where several comparison cate-
gories are apposed. The collated projects are analyzed based on
the employed hardware, i.e. robotic hand/arm and vision sensor
utilized and its architecture. Two major camera configurations
for the scene perception by the robot are discerned, viz. the
eye-in-hand and the eye-to-hand ones, which entail mounting
the vision sensor(s) onto the robot’s end-effector or installing the
cameras separately from the robot, respectively. In the second case
the camera should hold such a pose to provide the capability to
observe the entire working space of the robot. Additionally, metic-
ulous emphasis is given on whether the under consideration
framework employs an object recognition module and on its gen-
eralization capabilities. Moreover, since systems that integrate
simulation with other robotic platforms demonstrate higher force
closure rates, in Table 2 we indicate whether the respective frame-
works make use of either the GraspIt! (Miller & Allen, 2000) or the
OpenGrasp (Ulbrich et al., 2011) environments. Finally, we
Simulation
with
other platforms

Grasping point
estimation/generalization
capabilities

Vision sensor
utilized

Camera
configuration

GraspIt! Supervised/limited Stereo cameras Eye-to-hand
GraspIt! Unsupervised/high n/a n/a

No Supervised/limited Stereo cameras Eye-to-hand
No Supervised/limited Monocular Eye-to-hand
GraspIt!
OpenGrasp

Unsupervised/high Monocular Both

GraspIt! Supervised/high Monocular
time-of-flight

Eye-to-hand

No Supervised/limited Monocular Eye-to-hand

No Supervised/high Stereo cameras Eye-to-hand
No Supervised/limited Monocular Eye-in-hand
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qualitatively compare the grasping point estimation modules of
the respective framework in a way to draw meaningful conclusions
regarding their ability to be adopted by other techniques or to gen-
eralize to other objects.

A grasp selection method that makes use of 3D sensor data to
appoint a ranked set of potential grasps for an object placed on a
workbench at a predefined location is proposed in Hsiao, Chitta,
Ciocarlie, and Jones (2010). Stereo cameras installed on the PR2
robot are used and the simulation results are obtained through
the GraspIt! environment. Additionally, although the recorded
rates for ‘‘open loop’’ grasps are impressive, the limited set of test-
ing objects along with the restricted experimental justification
suggest that this technique is very unlikely to reproduce similar
results. In Curtis and Xiao (2008), a work that shares common
spirit with this paper is presented, in the sense that it incorporates
a knowledge transfer module to facilitate the efficient manipula-
tion of novel objects. However, their method does not implement
an object recognition framework since it emphasizes only in clas-
sifying the testing objects into categories that correspond to
known geometrical shapes. Grasping points are learnt through an
iterative and interactive process and characterize the entire shape
class, thus offering large generalization capacities. Despite its
sophisticated architecture and simulation via GraspIt!, this method
fails to enable the adequate manipulation of a cup or a mug
through its handle, whilst providing mere speculations regarding
the vision sensors used. The works in Madry, Song, and Kragic
(2012) and Chiu, Liu, Kaelbling, and Lozano-Pérez (2010) employ
an object recognition framework to empower their respective
grasping point estimation method, while regarding the pattern
identification module, the method of Madry et al. (2012) presented
higher generalization capacities. Additionally, both systems utilize
eye-to-hand camera architectures, whilst their grasping point
selection frameworks fail to generalize to novel objects belonging
to different classes.

In order to fully assess the performance of the proposed frame-
work in the particular task of manipulating novel objects, we run
several tests that include simulation with other robotic hands
and grippers, rather the SCORBOT-ER Vplus arm. Through these
tests, we artificially generated 3D object models belonging to the
classes of a car, cup or 4-legged animals and provided to the virtual
controller the respective vision algorithm that acquired images
through the Frame Grabber subroutine (in the GraspIt! environ-
ment). Our method enabled the adequate accomplishment of
object manipulation tasks through its recognition module that
facilitates the transfer of grasping point-based knowledge. The uti-
lized ontology architecture provides high generalization capacities
to the grasping point selection module and minimizes the com-
plexity of the framework. Evaluation with real objects in realistic
scenarios as those depicted in the accompanying video, provide
evidence of high force closure grasping rates and low generaliza-
tion error. Cars and 4-legged animals are correctly grasped at their
center of mass while cups are manipulated from their handle.
Throughout the literature, the only method that offers similar
capacities is reported in Saxena, Driemeyer, and Ng (2008), where
the STAIR I and II robots are utilized to perform demanding pick
and place tasks. However, an object recognition subroutine is not
suggested in Saxena et al. (2008), albeit their supervised grasping
point estimation process offers high generalization capacities.

The most trivial solution to the unknown object manipulation
problem is presented in Richtsfeld and Vincze (2011), where
images of known models are taken into account to form a 3D rep-
resentation of the testing scene. This enables the accurate estima-
tion of the respective grasping points of the objects, limiting,
however, the object operation range of the method to trained mod-
els only. The most recently proposed systems are those presented
in Boularias, Kroemer, and Peters (2011) and Huang, Walker, and
Birchfield (2012). The advent of technology enabled the use of
Time-of-flight cameras in Boularias et al. (2011) for the acquisition
of accurate 3D data, which in turn, were fused with shape informa-
tion retrieved from the Princeton Shape Benchmark. Similar to
(Curtis & Xiao, 2008), sophisticated shape descriptions provide evi-
dence of low generalization error however, they fail to appoint the
grasping point of a cup as its handle. It is apparent that, all the
aforementioned frameworks rely on highly sophisticated modules
that are independent of the utilized hardware. The proposed
hardware-independent solution, through the class-dependent pose
manifolds and its novel object recognition module, provided
invariance to large displacements and partial occlusions, whilst
easing the grasping of unregistered objects.
5. Conclusion and future work

In this paper an integrated framework for industrial object
manipulation was presented. Our method suggests a novel solution
to the automatic manipulation of objects for industrial purposes in
terms of providing a low complexity architecture capable of gener-
alizing to unknown objects without requiring additional learning of
new objects. The system exhibits real-time performance and it can
be easily adopted by any robotic platform regardless of its compo-
nents, e.g. gripper, joints, etc. Moreover, the presented framework
integrates ontological models into a unified context for the partic-
ular task of the autonomous object grasping. It ranges from a per-
ceptual object recognition module up to a semantic based
categorization of object affordances. We believe that one of the
major challenges in industrial-centric object grasping is trying to
answer the three questions of What, Where, and How, in a cohesive
way, without leaving out critical semantic constraints that are
affecting the whole context of the object manipulation tasks. The
proposed system, addresses the recognition problem via a BoF clas-
sification scheme from a shape based perspective. A 6 DoF pose esti-
mation technique incorporates a robust bunch-based architecture
along with a manifold modeling procedure. The grasping points
are then identified through an ontology-based knowledge acquisi-
tion, where the recognized objects inherit their affordances from
the respective classes. In such a way, an ontologization concept is
realized focusing on the liaison between computer vision algo-
rithms and the corresponding motor commands to accomplish
grasping of an unknown object. Unlike other contemporary solu-
tions, which either crave labor-intensive on-line learning or con-
struct high dimensional input vectors, the proposed method
requires minimum supervision and low dimensionality training
data, thus minimizing the complexity of the system and making it
appropriate for industrial applications. We believe that our
vision-based solution for the particular problem addresses all the
challenging issues and offers high adaptability and large generaliza-
tion capabilities in a minimum cost.

With an outlook to the future work, we consider replacing the
Bag-of-Visual-Words model with the Vector of Locally
Aggregated Descriptors (VLAD) (Jegou, Douze, Schmid, & Pérez,
2010) model. Given a codebook, instead of creating a vector of fre-
quencies, the VLAD model produces a vector of differences, as dis-
tances, between a feature and the clusters center. This approach
significantly reduces the number of the codebook clusters to tiny
sizes while maintaining robust performances. Moreover, in order
to highlight the effectiveness of our approach it is important to
perform experiments using larger set of objects. Furthermore, we
can also repeat the experiments employing additional objects in
the training set as distractors, to assess the large-scale recognition
performance. Finally, following the recent advances in deep learn-
ing we also consider designing a deep Convolutional Neural
Network or a deep network of sparse auto-encoders to
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automatically learn highly discriminative features for object recog-
nition and pose estimation.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.eswa.2015.06.
039.
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