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Abstract: During the last decade, a wealth of research was devoted to building integrated vision systems capable of both
recognising objects and providing their spatial information. Object recognition and pose estimation are among the most
popular and challenging tasks in computer vision. Towards this end, in this work the authors propose a novel algorithm for
objects’ depth estimation. Moreover, they comparatively study two common two-part approaches, namely the scale invariant
feature transform SIFT and the speeded-up robust features algorithm, in the particular application of location assignment of an
object in a scene relatively to the camera, based on the proposed algorithm. Experimental results prove the authors’ claim that
an accurate estimation of objects’ depth in a scene can be obtained by taking into account extracted features’ distribution over

the target’s surface.

1 Introduction

Over the past decade, significant research efforts were devoted
to the building of autonomous vision systems, capable of
providing location and direction competencies to robots. The
procedures of obstacle avoidance or object manipulation can
be accomplished by integrating vital visual information
derived from pose estimation techniques. Algorithms that
were recently proposed utilise either visual sensors [1, 2] or
the latter combined with inertial ones [3]. Another open
research topic in computer vision is the depth estimation. In
[4], the discrete Fourier transform (FT) is used to estimate
both local and global transformation of the spatial
information. On the other hand, one of the most efficient
ways to calculate a scene’s depth is the adoption of a
disparity estimation method. Stereo vision frameworks
invoke correspondences derived from two slightly different
images to extract sufficient spatial information. A recent
survey of existing disparity estimation methods is presented
in [5].

During the past few years, remarkable efforts were made to
build new vision frameworks for robust object recognition in
cluttered environments. To this end, researchers emphasised
in creating recognition schemes based on appearance
features with local estate [6, 7]. Algorithms of this field
extract features with local extent that are invariant to
possible illumination, viewpoint, rotation and scale changes.
During the past decade, several techniques that enforce the
essential role of local features in demanding pattern
recognition tasks were presented [8, 9]. The two main sub-
mechanisms of such frameworks are the detectors and
descriptors of areas of interest, respectively. The efficiency
of the two sub-mechanisms is investigated in [9], where
detectors and descriptors are evaluated for object
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recognition purposes. The two most widely used object
recognition frameworks based on local appearance features
are the scale invariant feature transform (SIFT) [10] and
speeded-up robust features (SURF) [11]. The common issue
in both of them is the fact that their detector depicts
significant efficiency [9, 12, 13] since it is not affected by
possible image alterations. On the other hand, the most
important drawback of SIFT’s and SURF’s descriptor, is
the fact that its performance alters significantly under
possible rotation, scale, viewpoint and illumination changes.
Methods that consist of both a detector and a descriptor are
referred in the literature as two-part approaches.

The main idea behind interest location detectors is the
pursuit of points or regions in a scene containing unique
information. Harris and Stephens [14] were the first to
implement an interest point detector, known as Harris Corner
detector. Owing to the fact that it provides significant
repeatability, many recent studies [15, 16] have adopted it in
demanding object recognition tasks. Furthermore, several
variations of Harris Corner detector, such as Harris-Laplace
[12] and Harris-Affine [13], were presented in an attempt to
provide enhanced efficiency. In a following step a descriptor
organises the information collected from the detector in a
discriminating manner. In [17], a new invariant descriptor
called Spin Image that outperforms Gabor filter was
presented. The gradient location and orientation histogram
(GLOH), which was proposed in [9], produces descriptor
histograms that are calculated on a fine circular grid.

Matched features from 2D images are combined in order to
produce the 3D model of a pre-recognised object. In [18], a
method able to compute camera poses from single query
images and to efficiently search for 3D models in a
city-scale database is presented. It employs viewpoint
invariant patches (VIP) that are based on the creation of
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ortho-textures for the 3D models and on the detection of local
features, for example, SIFT or SURF, on them. Time-of-flight
cameras can be used for the precise 3D environment mapping,
as it is shown in [19]. In [20], an image-based visual servo
with natural landmarks is presented, as well as, a real-time
method for estimating and tracking the 3D pose of a rigid
object. On the other hand, in [21], pose estimation tasks are
fulfilled, by exploiting SIFT in a different manner the
contour of the 3D model is extracted, while new
correspondences obtained from SIFT and the contour are
taken into account for the final pose estimation. In addition,
local features are utilised in biologically inspired vision
systems capable of adequately estimate objects’ pose in a
scene. In [22], a real-time vision system that integrates a
series of algorithms for object recognition, tracking and
pose estimation tasks is presented.

In this paper we investigate the construction of a simple and
easy-to-build framework for location assignment of an object
in a scene. Initially, a database is built and the objects —
targets are registered. Images of each object are captured at
different distances from the camera and the measured depth
do 1s stored. The ultimate goal is to estimate objects’ distance
from the camera (Z*) by taking into account the spatial
information obtained during training. Thus, considering a
given features’ distribution over the object’s surface
corresponding to a known depth, the object’s distance from
the camera, in cases where the distribution alters, can be
computed. The basic assumption underlying the proposed
method’s motivation derives from the Thales’ intercept
theorem, as depicted in Fig. 1, where a rather simplistic case
of four points on the surface of a plane is illustrated for
demonstrative purposes. The further an object is positioned
from the camera the denser the distribution of its features
becomes, and this relation is linear. The proposed method
excels in simplicity, computational cost and execution time.
Furthermore, its database can be easily modified for the
needs of challenging multi-object recognition tasks and,
more important, combinations of detectors and descriptors
can be utilised. Our method expands any two-part approach
for the needs of objects’ depth estimation in a scene. By
exploiting vital information derived from SIFT’s and
SUREF’s detector and descriptor, we are able to estimate the

Training Phase

Working Scenario

Fig. 1 Basic assumption of the proposed method
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distance between the camera’s frame and the recognised
object. In turn, one of the proposed method’s drawbacks is
the fact that it requires at least two images per object, one
obtained during training and one captured through image
sequences representing a real scene. Moreover, partial
occlusions affect directly the efficiency of the algorithm
since the object features for the boundary are lost around
some corners. In Section 4 our claim that the distributions’
similarity estimation can produce an accurate measurement
about objects’ depth is experimentally proved.

2 Two-part algorithms
2.1 Sscale linvariant Ffeature Ttransform

SIFT’s detector starts with the image being convolved with the
variable-scale Gaussian function for the production of the
scale-space image. Afterwards, the stable key-point locations
are detected by using scale-space extrema in the difference-
of-Gaussian (DoG) function convolved with the image. After
the efficient key-point location assignment by the detector,
information around a feature point is exploited by the
descriptor. Initially, a consistent orientation to each key point
based on local image properties is estimated. For each image
sample, the gradient magnitude and the orientation are
computed using pixels’ intensity values differences. The
final descriptor representation is a 4 x 4 x 8 = 128 element
feature vector with magnitude and orientation derived from
the algebraic sum of the orientation histogram contents for
every key point.

2.2 Speeded-up robust features

Interest point detection is performed by adopting the basic
Hessian matrix approximation and, thus, by utilising
integral images, as proposed in [23]. For the needs of the
efficient detection of blob-like structures, SURF’s detector
is based on the Hessian matrix. A key point is found where
the determinant of the Hessian matrix becomes maximum.
The construction process of SURF’s descriptor is divided
into two phases. In the first stage, and with a view to the
descriptor’s invariance to a possible image rotation, a

Q do ___distribution (A*,B*I"*,A%)
P Z* — distribution (A*,B*,**,A")

A’
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reproducible orientation of the interest points is estimated. For
every interest point an orientation, which is estimated by
calculating the sum of all Haar wavelet responses within a
sliding window of size (77/3), is assigned. In the second
phase, a 20 s size square region centred around the key
point and oriented along the orientation extracted in the
previous stage is constructed. This region is split up
regularly into smaller 4 x 4 square sub-regions and for each
of them Haar wavelet responses on 5 x 5 sample points are
computed. The final descriptor representation is a feature
vector with 64 elements that is extracted by taking into
account the vectors of each sub-region.

3 Objects’ depth estimation using any
two-part algorithm

The proposed objects’ depth estimation process is motivated
by the idea that the detected features are located on given
geometric positions, and thus they can be considered as the
corners of a polyhedron, the centre of gravity of which is
computed and it is associated to the actual centre of mass of
the sought object. Once the features’ centre of mass is known
and the object is recognised, the distance of the object from
the camera is trivial, given at least one recorded position of
the object. Practically, the proposed technique tries to
estimate the geometrical proportion between an image of a
known object (contained in the database) and another one
in a scene containing the same object in a different
arrangement. By taking into account the distribution of
objects’ features around their centre in the image space we
can estimate spatial information about the object. This
could be accomplished by comparing an object’s image to
that of a scene’s containing it and, therefore transform
information from image space to the real world.

The main idea underlying our algorithm is the maintenance
of any two-part approach’s ability in object recognition while
making an attempt to further exploit it in order to assign to the
recognised object its distance from the camera. To this end,
we have constructed a database containing images of
several objects. With a view to database’s enrichment, these
objects were photographed from different viewpoints and
distances from the camera. These distances were accurately
measured with a laser device and recorded to evaluate the
proposed position estimation technique. Each object was
captured from four different viewpoints and two different
distances from the camera. Moreover, by taking into
account SIFT’s and SURF’s matching sub-procedures we
have built an online scene search engine. Estimations
derived from this engine are taken into account for the
depth of the centre of mass of the object’s feature
estimation task.

The main stages of the proposed algorithm are as follows:

Stage I: Apply the detector mechanism to the scene’s and
object’s image, in order to estimate the features position in
each of them.

Stage II: Obtain the N features that match in the two images by
applying the matching sub-procedure of the two-part algorithm.
Define as (Xg, Yg), i=1, ..., N the positions of the N
features in the scene image and (X, Y,), i=1, ..., N the
positions of the N features in the object image.

Stage III: Define as (Xg, Yg)and (X, , Y, ) the features’
centres of mass for bothcimacges. This is aécomplished by
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estimating the mean values of the feature positions in the
two images

1 & 1 &
X =3 H ad v =130
i=1 i=1

e 1 &
X, = ;XOI and ¥, = ; Y,

Stage IV: Calculate the mean Euclidean distance (in pixels) of
each feature from the corresponding centre of mass that is
extracted in the previous stage. Set as Eg and E,, the mean
Euclidean distances in the scene and object image,
respectively. The following relations are used

N
ES:lZ\/(XS —Xg )+ (Y5, — Y5 )
Nl':] i c i c

E_Lly \/X X P+, —V )
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Stage V: Estimate ds which corresponds to the ratio of the two
mean distances Egand E. Furthermore, we introduce the pre-
computed depth dp, which is obtained during the training
session and when the object is captured alone

hoEo
Eg
Stage 1 is apprehended as the training session of our
algorithm where the database is constructed. This is a
controlled process where each object entering the database
is separately captured and its distance from the camera is
measured. The background used is a neutral, uniform one,
while in cases of more complex scenes we segment the
target objects. In this phase, for each image in the database
the key-point features are extracted using the detector
mechanism. Images of each object are captured at different
distances from the camera and the measured depth do is
stored. This process is performed off-line; thus, execution
time is not taken into account. The results are stored for
further use at the next phases. In Stage 2, the matching
sub-procedure of the two-part algorithm is performed.
Especially, descriptors that are common in both images
(scene and object) are extracted. It is apparent that, one
image representing the scene is compared with several
others, representing the object from different viewpoints.
Furthermore, the locations of the common features are
stored for further use. In Stage 3, the object’s depth
estimation sub-procedure takes place till the conclusion of
the algorithm. Moreover, at this phase the features’ centres
of mass in both images are calculated. The last ones are
obtained by estimating the mean values of feature locations
in both representations. In Stage 4, the distance of each key
point from the centre of mass is calculated. This is
measured in pixels with the use of Euclidean distance. By
the end of this sub-routine, we are able to collect spatial
information of an object in a scene. This is accomplished
by simply estimating the distribution of trained features
around their centre of mass. Finally, in Stage 5, the object’s
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distance from the camera is computed. The pre-computed
depth dp, measured during the training session of the first
phase, is taken into account. The ratio ds is used to measure
the proportion of the object’s features to those found in the
scene.

Concluding, after the necessary training session and the
database construction at the first stages of the method, an
online search engine takes over. It is responsible for
querying in the scene for objects contained in the trained
database. Whenever an object is found, the scene is
compared with the image of the object, providing the
majority of common matches. Finally, features’ information
from both images is interpolated with a view to objects’
position allocation.

4 Experimental results

The proposed object’s depth estimation method is evaluated
through extended tests containing several scenes. The tests
were executed on a typical PC with a core2duo 2.2 GHz
processor, 2 GB RAM and Windows XP operating system.
The camera used (Grasshopper by Point Grey Research
[24]) is able to capture images up to 1280 x 960 pixels
resolution and is connected to the PC via a firewire port.
Data transmission is accomplished by using IEEE 1394b
transfer protocol. Initially, in Fig. 2 a scene comprising four
different objects is shown. We captured five different
images representing the same scene under possible
viewpoint changes as it is shown in Fig. 2a. Furthermore,
after each experiment, the images were stored in the
database along with each object’s distance dp. The latter
were stored in a matrix format as shown in Table 1.
Afterwards, we applied the training session (Stage 1) of the
proposed method, where each object is photographed
separately and under altering viewpoint and illumination
conditions. This stage is devoted to the extraction of interest
key points using both SIFT and SURF. Thus, we have
constructed a large database containing information of
objects’ identity along with their spatial information needed
for the adequate fulfillment of the proposed object’s depth
estimation method.

Then, we applied the next stage (Stage 2) of our approach
where matches between scene’s and object’s images are
obtained by using the matching mechanisms of both SIFT
and SURF. Furthermore, we estimated features’ centre of
mass for both images (scene and comparing object) as it is
implemented in Stage 3. Moreover, the mean Euclidean
distances and the ratio ds are calculated by applying Stage 4
and Stage 5, respectively. Finally, each object’s distance
from the camera is estimated by multiplying the extracted
ratio dg by the corresponding pre-computed depth dp. The
results for the this first scene (shown in Fig. 2) are illustrated
in Table 2 where one can see that the accuracy of the
proposed object’s depth estimation method never falls below
75% while the average stays at 92.8%, with a standard
deviation (o) of 5.81. Furthermore, SIFT outperforms
significantly SURF in the object’s depth estimation for the
scene of Fig. 2 since its performance oscillates at around
96% (o = 2.36), while SURFs at 88% (o = 5.66).

However, in common environments, rigid objects such as
those in Fig. 2, seldom exist. The most likely is that scenes
captured in an everyday workspace may contain non-rigid
objects — targets. For this reason, we assessed the proposed
technique in a second scene comprising four non-rigid
objects as illustrated in Fig. 3. Furthermore, each object’s
distance from the camera (ground truth measurements) is
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Box Wireless

Modem Book

Fig.2 Scene that contains 4 different objects is captured from
several viewpoints (a,b,c,d,e) 2a and the extracted features 2b

a Four different objects and the corresponding viewpoints
b Same scene after the feature extraction process

Table 1 Ground truth measurements for the scene shown in
Fig. 2
Viewpoints and distances, cm — ground truth
Object a b c d e

book 100 73 123 100 103
modem 102 75 125 107 101
box 125 100 145 131 118
wireless 122 97 143 117 128

stored in a matrix format and presented in Table 3. By
following exactly the same procedure as the first experiment
we obtained the results shown in Table 4. Once again
SIFT’s accuracy remains higher than SURF’s (94.31% and
=287 to 87.01% and o =3.94), while the overall
average accuracy remains at relatively high standards and at
approximately 90.66% (o = 5.01).

Finally, as occlusions are of the most common problem in
computer vision and occluded objects might result to
information loss, we tested the robustness of the proposed
object’s depth estimation technique against them. Towards
this concept, we introduced the scene shown in Fig. 4,
containing the same non-rigid objects but in a different
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Table 2 Experimental results for SIFT’s and SURF’s
performance under different viewpoints 2(a), 2(b), 2(c), 2(d) and
2(e) of Fig. 2's scene

Viewpoints and distances, cm

Object do SIFT SURF
Meas acc, % Meas acc, %

book 100 100.4 99.5 89.9 89.99
modem 102 103.9 98.11 88.9 87.19
box 125 118.7 95.02 134.9 98.07
wireless 122 115.4 94.61 112.8 92.54
book 73 72.3 99.12 84.1 84.76
modem 75 81.9 90.77 92.1 77.08
box 100 93.1 93.16 109.2 90.77
wireless 97 96.7 99.72 106.8 89.87
book 123 115.4 93.86 132.1 92.59
modem 125 119.7 95.83 94.6 75.74
box 145 142.6 98.35 138.3 95.40
wireless 143 140 97.91 134.3 93.94
book 100 97.4 97.46 91.2 91.24
modem 107 101.5 94.93 88.2 82.46
box 131 129 98.48 144.1 89.98
wireless 117 113.9 97.38 128.7 89.97
book 103 106.8 96.22 99.9 97.03
modem 101 103.3 97.71 114.5 86.6
box 118 117.8 99.91 132.1 88.05
wireless 128 132 96.86 144.6 87.02%

Meas stands for measured and acc for accuracy

arrangement, so that the objects overlap with each other. The
viewpoint angles of the camera remain the same as those of
the previous scenes (e.g. Fig. 3a). In addition, the ground
truth measurements for each object and viewpoint are
presented in Table 5. The proposed method’s results for this
scene are illustrated in Table 6. The overall efficiency of the
algorithm is around 89.6% with o= 5.18, while SIFT
(approx. 93.5% and o = 2.89) outperform SURF (approx.
85.85% and o = 4) in position assignment of the object in
the scene illustrated in Fig. 4.

It is apparent that, the main idea behind the proposed
method is the efficient exploitation of features’ distribution
over an object’s surface. As a result, an important aspect
arises in cases of partial occlusions an object’s parts
containing significant amounts of features. In such cases,
the proposed method fails to estimate accurately the
object’s distance from the camera. A simple example of
occlusion is shown in Fig. 5: Figs. 5b and ¢ demonstrate
the distribution of SIFT features over the object’s surface in
a scene with no occlusion and with a partial occlusion,
respectively. In this experiment, the accuracy of the
proposed method, in case of an occlusion, is around 70%.
Moreover, we introduce another scene, which is depicted in
Fig. 6, that contains the four previously examined objects.
Needless to say that, the algorithm fails in cases where the
recognition approach is ineffective. In this experiment, the
box and the ball were fully visible, the bunny was partially
occluded, whereas the cup is almost invisible by the
camera. Box’s and ball’s depths were very accurately
estimated (94.18 and 95.02%, respectively), but the cup
was not recognised and bunny’s depth, because of the
partial occlusion, was mis-calculated (75.41%). We have
evaluated our method through several tests comprising
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Bunny Box Cup Ball
b
e a d
c

b

Fig. 3 Second scene containing four additional objects captured
from several viewpoints (a,b,c,d,e) 3a while the extracted features
are shown in 3b

a Four additional objects and the corresponding viewpoints
b Results of the feature extraction process

Table 3 Ground truth measurements for the scene shown in
Fig. 3

Viewpoints and distances, cm — ground truth

Object a b c d e
bunny 115 100 135 120 110
box 112 98 132 115 117
cup 110 98 130 113 120
ball 118 101 131 115 125

a series of partially occluded subjects. Through the series
of the experiments, the efficiency of our algorithm has a
mean accuracy value 55% with o= 7.97. Although this
might drastically affect a demanding manipulation task,
the whole problem can be simplified by utilising more
than one camera in order to assess more integrated data.
Multi-camera systems exhibit the advantage to minimise the
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Table 4 Experimental results for SIFT’s and SURF’s
performance under different viewpoints 4(a), 4(b), 4(c), 4(d) and
4(e) of Fig. 3's scene

Viewpoints and distances, cm

Object do SIFT SURF
meas acc, % meas acc, %
bunny 115 111.3 96.85 105.9 92.11
box 112 108.3 96.71 121.3 91.68
cup 110 114.9 95.53 125.0 86.33
ball 118 122.3 96.35 105.1 89.07
bunny 100 95.2 95.23 111.7 88.28
box 98 101.6 96.24 82.1 83.78
cup 98 106.2 91.55 109.9 87.84
ball 101 108.1 92.94 118.9 82.25
bunny 135 121.1 89.71 122.0 90.40
box 132 140.2 93.72 119.9 90.87
cup 130 127.0 97.71 115.1 88.61
ball 131 130.1 99.38 155.0 81.67
bunny 120 111.3 92.78 104.1 86.75
box 115 99.1 86.2 126.8 89.72
cup 113 118.2 95.39 130.7 84.31
ball 115 1221 93.82 96.6 84.06
bunny 110 104.1 94.68 127.2 84.36
box 117 109.5 93.66 122.0 95.69
cup 120 128.9 92.56 142.5 81.18
ball 125 130.9 95.27 148.2 81.44

b

Fig. 4 Scene that contains the same fours objects in different
geometrical constraints that produce occlusions

a Alternative placement of the four objects introduced in 3
b Extracted features
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Table 5 Ground truth measurements for the scene shown in
Fig. 4

Viewpoints and distances, cm — ground truth

Object a b c d e
bunny 112 92 137 118 108
box 119 100 125 113 125
cup 102 84 126 110 106
ball 118 96 122 128 116

Table 6 Experimental results for SIFT’s and SURF’s
performance under different viewpoints 6(a), 6(b), 6(c), 6(d) and
6(e) of Fig. 4’s scene

Viewpoints and distances, cm

Object do SIFT SURF
meas acc, % meas acc, %
bunny 112 120.5 92.40 96 85.73
box 119 113.1 95.12 108.1 90.86
cup 102 114.1 88.10 114.5 87.73
ball 118 120.1 98.20 112.4 95.26
bunny 92 101.1 90.01 78.1 84.93
box 100 104.9 95.00 111 88.99
cup 84 82.3 97.99 100.1 80.75
ball 96 102.9 92.78 114.1 81.14
bunny 137 130.1 95.00 124.1 90.61
box 125 132.1 94.27 109.1 87.31
cup 126 119.2 94.64 112.4 89.22
ball 122 133.9 90.24 107.1 87.79
bunny 118 122.4 96.19 102.6 87.02
box 113 121.4 92.56 129 85.80
cup 110 101.2 92.04 131.6 80.31
ball 128 138.2 91.96 104.1 81.37
bunny 108 116.7 91.87 129 80.50
box 125 119.9 95.94 144.2 84.64
cup 106 117.2 89.40 120.7 86.05
ball 116 105.1 90.61 137.9 81.08

possibility of partially occlusions of objects in a scene. Yet, in
single-camera systems, a solution would be to detect whether
the distribution of the features is uniform around the centre of
mass and decide on the reliability of the measurement.

We conclude by presenting comparative results of the
proposed integrated object recognition and depth estimation
algorithm with a commercially available framework: The
Visual Pattern Recognition system (ViPR version 3.0),
manufactured by Evolution Robotics [25], which offers
adequate database construction processes that enables its
usage in demanding pattern recognition tasks. In Table 7, the
attributes of both the proposed method and the ViPR are
presented. ViPR is a framework for real-time object detection
and tracking, yet it is also prepared with a depth estimation
routine. As it can be seen, the common issue in both of them
constitutes the fact that they are able to recognise multiple
objects per frame, which in turn could be apprehended as an
important advantage in modern pattern recognition
frameworks. We have exhaustively tested both the proposed
method’s and ViPR’s efficiency throughout several
experimental sets comprising the objects belonging in the
database that is available at [26]. In Table 8, the accumulated
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Pattern
Classification

a

Fig.5 Features’ distribution over the surface of an non-occluded 5b and a partially occluded 5¢ object 5a

a A book
b Extracted SIFT features of the non-occluded book
¢ Extracted SIFT features of the partially occluded book

a

Fig. 6 System in cases of total objects’ occlusions (e.g. cup) fails to estimate their depth

a A scene containing the four previously introduced objects

b Extracted SIFT features of the non-occluded objects and those that are partially occluded
In instances of partial occlusion (e.g. bunny) the proposed method calculates targets’ distance from the camera with reduced efficacy

Table 7 Comparison of the proposed method and ViPR

Proposed method ViPR

cameras used firewire, USB mainly USB
maximum resolution 1280 x 960 320 x 240
objects’ depth estimation error <15% <30%
execution time 2 s/object real time

comparison results for the 70 different objects are illustrated.
The proposed method, which adopts either SIFT or SURF,
outperforms ViPR in objects’ position estimation tasks. With
more details, SIFT was once again proven to be the most
effective solution providing 90.11% mean efficiency, when
SURF’s and ViPR’s remained around 87.04 and 80.21%,
respectively. Generally, the advantages of our method is its
ability to utilise both firewire and USB (Universal Serial
Bus) cameras with resolution up to 1280 x 960 pixels and
overall depth estimation error below 15%. On the contrary,
ViPR that excels in object recognition and tracking processes
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mainly uses USB cameras with 320 x 240 maximum
resolution, while working real time with overall estimation
error below 30%.

To sum up, we have proposed a novel technique for the
estimation of the distance between the camera and
the centre of mass of the object’s features. Its main
advantages are its simplicity, the limited computational cost
and the execution time. Furthermore, its database can be
easily modified for the purposes of multi-object recognition.
On the other hand, the fact that it requires a pre-constructed
database containing spatial information of the trained
objects, is its main drawback. As a result, it cannot
be utilised in operations that entail online object
recognition. In turn, the proposed method could be adopted
in applications where the need of targets’ position
assessment is a prerequisite. As a result, demanding pick
and place tasks, such as moving plants in a green house,
could be adequately accomplished. Furthermore, after
the construction of an adequate database and considering
a manipulator, several tasks including the clearing of a
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Table 8 Evaluation of our method using (i) SIFT and (ii) SURF against ViPR in distance from camera estimation tasks for the objects
contained in the database available at [26]

Object # Ground truth SIFT SURF ViPR

Mean error, cm Std error Mean error, cm Std error Mean error, cm Std error
1 85 4.14 7.09 11.48 0.99 20.25 12.78
2 80 2.74 9.99 8.45 3.01 17.55 9.03
3 83 9.48 0.16 6.52 1.43 27.76 16.71
4 78 8.84 0.03 11.56 4.53 14.15 0.99
5 71 11.12 1.75 12.24 5.25 22.56 16.77
6 73 10.82 1.77 12.81 1.93 20.78 14.37
7 81 10.11 3.08 11.76 1.54 19.85 7.38
8 85 9.21 2.47 10.85 3.07 15.81 8.81
9 60 4.66 0.26 10.18 1.05 22.14 7.89
10 58 7.06 5.31 10.17 2.49 8.17 20.35
11 57 9.56 2.31 10.98 3.9 7.69 23.14
12 61 9.27 1.45 10.46 0.61 16.58 9.75
13 58 8.62 0.71 11.48 3.65 15.47 8.51
14 105 7.76 1.38 7.11 1.04 16.52 2.16
15 95 7.07 1 9.47 2.08 23.94 16.24
16 100 11.61 2.29 12.51 5.42 15.31 11.23
17 99 12.48 0.08 12.52 2.36 19.05 5.92
18 70 10.18 2.12 14.91 5.33 17.33 6.58
19 68 4.15 6.73 7.89 1.18 3.33 11.67
20 72 7.18 1.04 9.81 0.24 11.86 7.09
21 102 7.11 4.7 9.34 0.55 13.93 4.27
22 99 9.45 0.57 10.12 2.74 7.75 2.44
23 101 4.83 3.05 11.53 0.32 19.85 3.86
24 98 5.57 2.29 6.58 1.88 5.52 1.62
25 110 2.41 8.42 9.5 0.45 10.89 6.02
26 108 11.54 1.33 11.52 3.59 23.89 11.01
27 114 7.36 3.97 6.82 6.15 19.06 5.08
28 80 3.01 5.01 3.39 3.58 13.11 4.68
29 78 10.44 2.67 13.48 5.4 5.9 3.5
30 92 4.57 8.87 6.25 6.04 14.41 10.14
31 99 10.24 2.67 10.85 2.65 19.53 12.35
32 55 7.21 0.58 11.58 3.82 14.87 6.28
33 66 6.76 3.28 7.83 3.91 10.02 0.7
34 68 9.31 0.9 11.48 1.1 9.44 0.81
35 57 6.59 3.62 8.66 0.6 12.62 1.86
36 64 7.28 2.57 9.23 2.67 12.23 6.65
37 48 7.17 0.26 9.62 1.86 14.33 8.46
38 68 9.85 3.25 11.71 1.1 12.89 3.32
39 86 8.31 3.66 11.26 1.61 16.83 3.43
40 79 12.53 4.89 16.34 5.23 15.52 10.08
41 92 9.2 0.86 7.83 0.82 13.11 8.08
42 96 13.49 11.83 15.18 3.78 27.07 16.21
43 68 6.03 6.83 7.59 3.19 19.03 9.73
44 82 9.08 4.88 13.47 4.66 20.92 14.3
45 76 6.17 0.64 8.69 0.8 23.87 13.3
46 63 11.28 2.54 7.83 2.81 18.34 8.38
47 124 8.04 0.02 14.25 3.92 25.58 19.11
48 129 5.59 7.37 7.86 2.99 19.53 5
49 134 5.66 1.19 11.51 1.81 19.85 4.04
50 119 6.73 2.95 7.89 2.85 17.99 3.45
51 115 7.41 0.52 9.88 0.63 23.68 10.47
52 121 9.57 3.61 7.66 4.67 19.74 3.89
53 111 8.06 4.39 13.01 0.563 24.34 17.34
54 108 8.65 0.03 11.47 2.71 23.43 19.02
55 116 7.53 4.52 9.67 0.91 25.43 19.55
56 68 9.37 5.31 13.49 0.42 12.17 12.64
57 62 8.06 5.14 12.53 0.14 16.78 8.75
58 59 3.83 3.87 7.48 2.44 11.89 2.87
59 b5 5.19 9.01 10.18 9.76 13.44 1.48
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Table 8 Continued

Object # Ground truth SIFT SURF ViPR
Mean error, cm Std error Mean error, cm Std error Mean error, cm Std error

60 70 2.17 4.25 4.52 4.03 17.83 6.89
61 85 5.88 2.11 9.78 1.34 18.83 11.83
62 82 5.78 6.77 4.52 5.6 2.83 9.25
63 82 6.34 3.19 8.06 4.61 11.91 4.17
64 78 8.49 2 7.94 0.68 13.83 0.78
65 76 9.17 0.78 10.67 0.82 8.08 5.25
66 91 9.33 0.97 11.54 0.55 10.82 4.69
67 86 11.82 3.9 11.33 3.73 15.28 11.14
68 78 9.51 2.1 11.99 1.9 15.83 9.34
69 81 8.49 4.28 18.51 6.45 18.08 11.35
70 68 8.93 2.38 13.34 4.25 16.49 11.97

conference centre or the tidying of a child’s bedroom after a
party etc., could be achieved by adopting the proposed
method.

5 Discussion

In this paper we proposed a novel computer vision technique
for objects’ depth estimation suitable for adoption to any two-
part algorithm. It is based on the observation that the features
extracted from any two-part algorithm correspond to spots on
the object’s surface and their centre of mass is related to the
one of the objects. Thus, by extracting these features at
known positions of the sought object, one can estimate its
distance form the camera. The proposed technique was
tested on the two most common two-part algorithms,
namely the SIFT and the SURF, and was found to
outperform with the first one. However, it is easily adopted
for any other two-part algorithm that can be found in the
literature. Moreover, it is compositionally inexpressive and
its training part is done off-line. Furthermore, its efficiency
depends on the distribution of object’s features over its
surface and as a result, the algorithm fails to estimate
object’s distance from the camera in case all the object’s
features detected are located on an occluded part of it.
Target applications includes robotics or any other one,
where apart from the object recognition, an estimation of
the position of the recognised object is essential.
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