
Auton Robot (2014) 37:191–207
DOI 10.1007/s10514-014-9388-x

Sparse pose manifolds

Rigas Kouskouridas · Kostantinos Charalampous ·
Antonios Gasteratos

Received: 1 March 2013 / Accepted: 25 February 2014 / Published online: 25 March 2014
© Springer Science+Business Media New York 2014

Abstract The efficient manipulation of randomly placed
objects relies on the accurate estimation of their 6 DoF geo-
metrical configuration. In this paper we tackle this issue by
following the intuitive idea that different objects, viewed
from the same perspective, should share identical poses and,
moreover, these should be efficiently projected onto a well-
defined and highly distinguishable subspace. This hypothe-
sis is formulated here by the introduction of pose manifolds
relying on a bunch-based structure that incorporates unsu-
pervised clustering of the abstracted visual cues and encap-
sulates appearance and geometrical properties of the objects.
The resulting pose manifolds represent the displacements
among any of the extracted bunch points and the two foci of
an ellipse fitted over the members of the bunch-based struc-
ture. We post-process the established pose manifolds via l1
norm minimization so as to build sparse and highly repre-
sentative input vectors that are characterized by large dis-
crimination capabilities. While other approaches for robot
grasping build high dimensional input vectors, thus increas-
ing the complexity of the system, in contrast, our method
establishes highly distinguishable manifolds of low dimen-
sionality. This paper represents the first integrated research
endeavor in formulating sparse pose manifolds, with experi-
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mental results providing evidence of low generalization error,
justifying thus our theoretical claims.
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1 Introduction

The performance of any robotic devices capable of perform-
ing manipulation tasks is directly related to its ability not
only to recognize objects, but to also provide accurate esti-
mations about their 3D geometrical configuration. Object
manipulation is a very complex procedure involving the accu-
rate estimation of the 6 DoF pose of the testing target, the
efficient avoidance of possible obstacles in the arm’s path
and the design of a grasping strategy for hand(finger)-object
alignment (Saxena et al. 2011). Most human operations are
related to object manipulation, such as drinking, eating, using
a tool, door opening, driving, etc. Driven by its fundamen-
tal importance and the ability to be adopted by an abun-
dance of diverse applications, several research endeavors
were directed towards object manipulation (Rasolzadeh et
al. 2010; Mason et al. 2011; Lippiello et al. 2011; Oikono-
midis et al. 2011; Saxena et al. 2008, 2006) or object search-
ing (Shubina and Tsotsos 2010; Andreopoulos and Tsotsos
2009). In recent years, scholarly activity has focused on solv-
ing object recognition and 3D pose estimation through meth-
ods involving the construction of large databases of images
of objects to be compared and matched with similar ones
during the testing phase (Detry and Piater 2011; Hsiao et al.
2010; Ferrari et al. 2006; Kouskouridas et al. 2012; Popovic et
al. 2010). However, such solutions fail to attract stakehold-
ers’ interest since, in most of the cases, a robot’s working
environment could well contain unknown objects positioned
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randomly. Towards this end, emphasis is given on designing
and implementing novel robust image understanding tech-
niques that can solve the problem of grasping unknown
objects under minimum supervision. However, there is no
ground solution to the manipulation problem combining
large generalization capacities together with modest com-
putational complexity, despite the substantial endeavors and
certain achievements so far.

This paper proposes a generalized solution to the 6 DoF
object pose estimation problem, with view to solve manipu-
lation tasks, assuming an obstacle-free path and a straightfor-
ward grasping strategy. We believe that, under these assump-
tions, our approach represents a more general solution to
object grasping that could be easily adopted by any robotic
architecture. The proposed Sparse Pose Manifolds (SPM)
method aims at solving the problem of unknown object
manipulation by unifying 3D pose manifolds and grasping
points into a cohesive framework for robot grasping, based
on the following intuitive ideas: (a) an object observed under
shifting viewpoints holds properties that can be sufficiently
modeled and projected onto a well-defined subspace, highly
distinguishable among its neighbors, and (b) even totally
different objects captured under similar perspectives should
share identical 3D pose attributes, leading to similar mea-
surements that can indeed establish highly discriminative
manifolds, capable of assigning accurate 3D pose tags to dif-
ferent object models. The proposed pose manifolds, formu-
lated via a sophisticated architecture, stand for a low dimen-
sional data representation that enables direct modification of
the configuration of the robot’s wrist according to the esti-
mated grasping points. Unlike contemporary systems requir-
ing extensive supervision and large repositories of images
of objects, our focus is on providing a ground solution, with
large generalization capacities based on unsupervised learn-
ing. Towards this end, we employ manifold modeling pro-
cedures that emphasize on processing available visual data
in such a way so that their projection onto the correspond-
ing subspaces is sparse, compact and highly representative.
Figure 1 illustrates the basic ideas upon which the proposed
framework is built. Contrary to the existing solutions for
object manipulation, requiring a priori knowledge of the
geometry of the object, our method builds distinguishable
pose manifolds that categorize identical poses of different
objects into the same classes.

Initially, given an image of an object with a specific pose,
we derive a feature vector through the proposed ellipse-fitting
module. This procedure iterates over the entire dataset com-
prising of object images belonging to 6 different classes. We
then employ l1 norm minimization in order to derive sparse
representation vectors and, henceforth, to enhance the gener-
alization capabilities of our method. As a follow-up step, the
derived manifolds are mapped, through supervised learning,
to a well-defined and highly representative subspace. The

Fig. 1 The key idea underlying the proposed framework is the estab-
lishment of highly representative manifolds that lie on subspaces of
low dimensionality. Different objects shot under the same aspects share
identical 6DoF estimations that are categorized into the corresponding
classes to form the pose manifolds. In this figure, these classes are rep-
resented by buckets of a specific pose, whilst the ultimate goal of the
proposed visual grasping method is to efficiently guide the gripper to
grasp an unknown object

ultimate goal of the proposed module is to efficiently esti-
mate the 6 DoF pose of an unknown testing object with view
to facilitate grasping operations. After the efficient estimation
of the pose of the object, through the manifold modeling pro-
cedure, its geometrical attributes (pose relative to the robots
frame) are given as input to the robots controller to perform
a grasp.

It is our belief that this work of ours makes a serious
contribution to the present state of the art, in the following
ways:

• The proposed Sparse Pose Manifolds method lays its foun-
dations on a novel module for pose manifold modeling
that establishes compact and highly representative sub-
spaces, whilst experimental verification provide evidence
for the existence of such manifolds, sufficient to facilitate
unknown object grasping.
• Pose manifolds depend on a novel bunch-based architec-

ture (here introduced for the first time) which, unlike pre-
vious works (Savarese and Fei-Fei 2007; Hinterstoisser
et al. 2007), is able to bypass the part selection process
using unsupervised clustering, whereas by extracting local
patches, encapsulates both appearance and geometrical
attributes of the objects.
• Extending earlier work reported in Mei et al. (2009, 2011)

where 3D pose estimations are limited to cars, we uti-
lize numerous databases of real objects available that are
further expanded by new artificially generated ones. In
addition, compared to previous work our method offers
higher generalization capacities mainly due to the efficient
learning based on a large a priori training set containing
numerous examples of real and artificial data.
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• The established manifolds exhibit low dimensionality,
thus avoiding the usage of conventional dimensionality
reduction schemes widely employed in several computer
vision applications. Besides, through the minimization of
the l1 norm we build sparse and compact manifolds that are
highly representative, tolerant to common imaging distur-
bances (e.g. noise) and superior in terms of discrimination
capabilities.
• Comparative evaluation of our work against other related

works demonstrates its superiority in 3D pose estimation
and object manipulation tasks. Quantitative and qualitative
experimental results provide evidence of high 3D pose
recovery rates with low generalization error, whist real
time execution boost the potential of our work.

This paper is organized as follows. In the following Sub-
section 1.1, we provide an overview of the related work in the
fields of eye-in(to)-hand target manipulation, sparse feature
representation and 3D pose estimation. In Sect. 2 we for-
mulate the proposed Sparse Pose Manifolds (SPM) method.
Experimental results demonstrating the quality of our work
are presented in Sect. 3, while some final notes and conclu-
sions are drawn in Sect. 4.

1.1 Related work

An essential phase in any object classification and pat-
tern recognition task is the feature extraction procedure.
Most classifiers attempt to compute a separating hyper-plane
between the corresponding classes, which leads to a vari-
ety of published methodologies (Bishop 2006). Considering
the simple two-class problem, in which a linear discrimi-
nant function should be computed, the decision hyperplane
is g(x) = wT x + w0, where w is the weight vector, w0 is
the bias term and x is a sample vector. However, the repre-
sentation of an object in a low dimensional space aiming
to provide a more discriminative information is the main
objective of any feature extraction technique, as the initial
step towards a minimum error classification and general-
ization capacity. Feature extraction algorithms are divided
into three categories, namely unsupervised, supervised and
semi-supervised ones, depending on the provision of the
labels of the corresponding samples. The majority of those
methods seek projection vectors A = [a1, a2, . . . , al ] that
minimize a particular cost function, following a certain cri-
terion, ultimately supplying an optimized low dimensional
representation of a dataset X = [x1, x2, . . . , xn]. Regard-
ing the unsupervised methodologies, the Principal Compo-
nent Analysis (PCA) (Jolliffe 1986) , in which the opti-
mization function seeks a sub-space, in order to maximize
the variance of the data, is considered the most popular.
Linear Discriminant Analysis (Duda et al. 2001) however,
another well-known supervised technique, attempts to max-

imize the ratio of the between-class to within-class scatter
matrices. Furthermore, the non-linear extension induced via
support vector theory (Schölkopf and Smola 2002), known
as “kernel trick’, lead to many kernelized versions of lin-
ear approaches, such as Kernel-PCA (Schölkopf et al. 1997)
and Generalized Discriminant Analysis (GDA) (Baudat and
Anouar 2000). A newly developed framework is the Graph
Embedding (GE) (Yan et al. 2007), in which all data sam-
ples are considered to form a graph G = {X, Q}, where Q
is a similarity matrix incorporating either geometrical or sta-
tistical relations that prevail the data set. The latter yields
a low dimensional manifold encapsulating the relations in
the initial high-dimensional space. Many known techniques
can be clarified under GE, and depending on the definition
of the corresponding similarity measure, the resulting mani-
fold may be identical to that produced by another algorithm,
such as the PCA. In other words, GE encapsulates the major-
ity of feature extraction methods. Sparse representation has
been introduced in signal processing and pattern recognition
via l1 norm minimization, which can be solved using stan-
dard linear programming (Chen et al. 2001). The inherent
properties that the l1 norm makes available, including dis-
crimination capability and noise tolerance, have drawn the
attention of scholars in computer vision and pattern recog-
nition fields (Qiao et al. 2010). The l1 norm minimization
has already been exploited in graph techniques (Cheng et al.
2010), dimensionality reduction (Zou et al. 2004; Pang et al.
2010), classification (Wright et al. 2009), and action recog-
nition (Guha and Ward 2012; Wang et al. 2013; Castrodad
and Sapiro 2012) leading to optimum results.

Based on the literature, in the field of robotics research two
major camera configurations for vision-based scene under-
standing are discerned. The eye-in-hand and the eye-to-hand
architectures entail mounting the vision sensor(s) onto the
robot’s end-effector or installing the cameras separate from
the robot, possessing however such a pose with the capabil-
ity to observe its entire working space. Such configurations
are utilized in several applications providing solutions to the
problems of 3D object modeling (Torabi and Gupta 2012;
Krainin et al. 2011), visual servoing (Chan et al. 2011; Lip-
piello et al. 2007) and object manipulation (Agrawal et al.
2010; Kragic et al. 2005; Ben Amor et al. 2012; Hebert et
al. 2012; Bohg and Kragic 2009). Srinivasa et al. (2010) pro-
posed a 6 DoF pose estimation technique that shares com-
mon ideas with the work of Choi et al. (2008), while incor-
porating the process of matching images of objects of the
test scene with 3D object models of a database constructed
offline. Two eye-to-hand cameras allow stereo-based depth
analysis which, when combined with data transmitted from
the eye-in-hand sensor, is accurate enough for 3D pose mea-
surement of the testing patterns. Besides, feature extraction
is accomplished via the Scale Invariant Feature Transform
(SIFT) whilst, for the fine adjustment of pose parameters,
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the problem is formulated as an optimization one and solved
by the Levenberg-Marquardt algorithm.

The term pose / grasping manifolds was first coined in
Tsoli and Jenkins (2008) with a view to propose a manifold
construction scheme based on data representing the motion of
a human hand during an object manipulation task. However,
this approach corresponds to a rather trivial method that pri-
marily builds high dimensional manifolds, whilst employing
conventional dimensionality reduction frameworks for sub-
space embedding. Furthermore, other drawbacks of the work
presented in Tsoli and Jenkins (2008) are thought to be: (a)
the configuration of the arm, obtained through a pose simu-
lation that needs to be provided by the user; and (b) lack of
solution to the grasping point calculation problem. In con-
trast, in this paper the term pose manifold is adopted with
the view to indicate that there is a direct relation between
pose-related data and the desired arrangement of the robot’s
end-effector.

Mei et al. (2009) have shown that given a highly represen-
tative dataset and an adequate manifold modeling subroutine,
the performance of 3D object pose estimation is appropriately
bootstrapped to the compactness of the established mani-
folds. In addition, they proved that part-based architectures,
unlike holistic ones, are capable of handling more efficiently
usual imaging disturbances such as partial occlusions and
background clutter. The key idea underlying the part-based
methods is the pursuit of points or groups of features that can
be efficiently processed to built highly discriminative object
models (Berg et al. 2005; Fergus et al. 2007; Leibe et al.
2004; Kouskouridas et al. 2013). According to Savarese and
Fei-Fei (2007), the most important advantage of part-based
frameworks stems from their ability to authorize condensed
object models by computing the liaison between parts of an
object from several views.

2 Method description

Initially, we collect images of large databases suitable for 3D
object pose recovery containing several objects shot from
varying perspectives. Our method utilizes the COIL-100
(Nayar et al. 1996) and CVL (Viksten et al. 2009) datasets,
whilst incorporating synthetically rendered data of 3D mod-
els, available at http://www.evermotion.org/. At the present
stage we hold a large number of training examples, which
are images depicting various objects in arbitrary geometri-
cal configurations along with the corresponding ground truth
measurements stored as feature vector yi ∈ R

6. The training
set was chosen to be broad, since the proposed methodol-
ogy does not employ an on-line training scheme and, thus,
new training data cannot be introduced. The utilized datasets
consists of images of objects captured under discrete inter-
vals (e.g. of 5 degrees) in the 6-dimensional pose space,

yet the regressor derives outputs in the continuous space.
From every image in the training set we extract the respec-
tive SIFT (Lowe 2004) features that are post-processed by
a homography-based RANSAC (Fischler and Bolles 1981)
for outliers removal. Through the unsupervised clustering of
the abstracted keypoints we define our bunch-based architec-
ture. This is an additional feature representation subroutine,
which builds new features considering both appearance and
geometrical attributes of the training object. As a follow-up
step the locations of each member of the architecture are pro-
vided as input to an ellipse fitting process in order to establish
the initial pose manifolds. The latter represent the distances
of each member of the part-based structure from the two foci
of the fitting ellipse. To this point we would like to state
that the main goal of the manifold modeling technique is to
design a pose model that projects similar poses of different
objects onto neighboring regions in the corresponding sub-
space. To this end, we consulted basic ellipse properties in
the Euclidean Space implying that a 2D ellipse, opposed to
circles or parabola, holds 5 DoFs (position, scale, shape and
orientation) and stands for a five-dimensional manifold.

In the next step the initial manifolds are reprojected onto
a highly representative and sparse subspace with large dis-
crimination capabilities, via the minimization of the l1 norm.
The resulting training set is denoted as {rt , yt } with rt ∈ V
representing the constructed sparse manifolds (input vectors)
and yt ∈ Y the respective ground truth measurements (out-
put vectors). The process of building the training set is an
iterative one that operates over several images of different
objects. Our sparse pose manifold modeling method con-
structs r ∈ V input vectors, taken into account during the
process of learning of the Radial Basis Function regressor
g, portraying the function φ(w). The latter represents the
link that needs to be learnt, in order to establish the correct
mapping between input vectors rt ∈ V and the modeled out-
put vectors yt = y(rt ;φ(w)) ∈ Y, φ(w) : V → Y . The
ultimate goal of the proposed method is to achieve accurate
estimations (y∗) about the 3D pose for the unknown object o∗
represented by r∗ testing input vectors in order to facilitate
the efficient manipulation of the object. A brief description
of the method is illustrated by means of the block diagram
of Fig. 2. The proposed sparse pose manifold method lays its
foundations on four modules that are of fundamental impor-
tance and affect directly the discrimination capability of the
established manifolds. These are: (i) a novel robust bunch-
based structure; (ii) the ellipse fitting process and the initial
manifold calculation; (iii) the reprojection of the resulting
manifolds onto a more sparse and more representative sub-
space and, (iv) the training of the regressor. The above men-
tioned modules, all of which are discussed in detail later on
in this section, provide contribution to the present state of the
art either in their own or in combination and insofar as the
authors are aware appear for the first time in the literature,
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Fig. 2 The figure depicts the two distinguished phases of the proposed
algorithm, namely the training (continuous line) and the testing (dashed
line) ones. The main building blocks of the proposed method are: (a)
the collection of labeled datasets dedicated to 3D pose estimation along
with the corresponding ground truth measurement yt ;(b) the module of
building the bunch-based architecture through unsupervised clustering
of the extracted visual cues; (c) the process of constructing initial man-
ifolds via conforming an ellipse over the members of the bunch-based

architecture; (d) the establishment of the highly representative subspace
of sparse pose manifolds accomplished by l1 norm minimization; (e)
the training of the RBF-based regressor g, from a priori set {rt , yt }with
t training examples in order to estimate the continuous and invertible
function φ(w) : V → Y , with w representing the vector of adjustable
parameters; (f) the process of executing a manipulation task for the
unknown testing example r∗ of object o∗

offering an elegant and efficient method for the manipulation
of an arbitrarily placed object.

2.1 Bunch-based architecture

This module entails the subroutine of building a part-based
formation that processes the abstracted visual cues of an
object in an unsupervised manner. The most notable feature,
constitutes the fact that our ultimate goal was to build a highly
representative topology capable of modeling the visual data
available in such a way so as to increase the generalization
capacities of the resulting method. We employ a novel fea-
ture representation scheme to extract parts of objects that
possess both appearance and geometrical properties of the
target. Although our method shares common ground with
the work of Mei et al. (2011), we consider the generalization
capabilities of their technique being rather restricted due to
their supervised-based feature extraction process. The latter
extracts key-points through the realization of a Probability
Density Function (PDF) associated with the joint distribu-
tion of appearance and geometry properties of the target.

Our bunch-based structure portrays appearance-based
characteristics by extracting invariant features of high dimen-
sionality with the SIFT descriptor (Lowe 2004) followed by
RANSAC (Fischler and Bolles 1981) for outliers removal.
Additionally, geometrical attributes of the object are aggre-
gated by employing an unsupervised clustering technique
over the matched SIFT key-points. Particularly, we treat the
clustering problem from a Bayesian perspective by applying
the Expectation Maximization (EM) algorithm to a Mixture

Decomposition Scheme. (Please refer to Sect. 3.1 for addi-
tional information regarding the number of clusters). Ana-
lytical presentation of the mathematical formulation of the
proposed part-based module is available in the Appendix.
With a view to the reader’s better understanding and in order
to clarify the unsupervised clustering approach employed we
introduce the respective pseudocode 1.

Algorithm 1 Calculate the positions θk of the γ clusters
1: Inputs: Locations of the ρ extracted SIFT features of the object oi

with pose q j
2: Initialize: θ ← θ(0), P← P(0), ε ←very small number, τ = 0
3: while ||Θ(τ + 1)−Θ(τ )|| > ε do
4: Compute: P(bk|vζ ;Θ(τ )) ←

(p(vζ |bk; θk(τ ))Pk(τ )
/ ∑γ

k=1(p(vζ |bk; θk(τ ))Pk(τ )
with ζ = 1, . . . , ρ and k = 1, . . . , γ

5: Find θk(τ + 1) through the maximization of:∑ρ
ζ=1

∑γ

k=1 P(bk|vζ ;Θ(τ )) ∂
∂θk

ln(p(vζ |bk; θk)), w.r.t. θk for
k = 1, . . . , γ

6: Set: Pk(τ+1)← 1
ρ

∑ρ
ζ=1 P(bk|vζ ;Θ(τ )) with k = 1, . . . , γ

7: τ = τ + 1
8: end while
9: Outputs: Locations of the γ clusters over the surface of the object

2.2 Establishing initial non-sparse manifolds

The goal of this module is to establish manifolds of low
dimensionality capable of moderately distinguishing similar
poses of different objects within the same pose subspace.
Towards this end, we build a generalized model emphasizing
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in encoding viewpoint-related data, invariant to object type
and category. The resulting model should be able to project
pose-related data onto the respective manifolds and to mini-
mize intra-class variability. The proposed generalized mod-
ule makes use of fundamental properties of the Euclidean
space and its geometrical shapes. Essentially, our model
focuses on fitting an ellipse on the members of the bunch-
based structure of an object. It should be noted that fit-
ting an ellipse on the contours of the Gaussians (estimated
through the EM algorithm) resulted in a pose model that did
not project similar poses of different object onto neighbor-
ing regions. Thus, our manifold modeling module employs
the implicit conic equation of an ellipse with points (X,Y )
in Cartesian coordinates, which takes the form ψ(Δ) =
AX2 + B XY + CY 2 + DX + EY + F = 0. Here Δ =
[A, B,C, D, E, F] corresponds to the vector of parameters
to be estimated. Furthermore, we formulate the problem of
the ellipse fitting as a combinatorial minimization problem
of the following generalized least-squares cost function:

Q(Δ) = ||b̂− ψ ||2

= 1/γ
γ∑

k=1

||AX2 + B XY+CY 2 + DX+EY + F ||

+ λ
5∑

N=1

Δ2
N (1)

An object oi with pose q is represented by the extracted
clusters bk, k = 1, . . . , γ , while N denotes the total number
of parameters of the cost function Q. The regularized para-
meter λ is experimentally set to 0.1 and is summed over the
first five elements of vectorΔ excluding F that is regarded as
bias. Additionally, the minimization of the cost function in
Eq. 1 is accomplished via the PSO (Eberhart et al. 2001) tool,
which stands for an evolutionary extrema estimation through
the “social interaction” of a population of particles. Further-
more, we utilize PSO to find the particular particle-atom in
the search space of 6 dimensions - as the dimensionality of
the vector κ- that holds the best score across all used gener-
ations. A more detailed analysis of the PSO falls beyond the
scope of this paper; interested readers may refer to Eberhart
et al. (2001) for additional information. We would like to
note that utilizing the same regularization weight for differ-
ent parameters, although it is definitely suboptimal in most
of the cases, e.g. regularized linear regression, it is com-
mon place in PSO. Additionally, PSO was selected against
other optimization techniques, e.g. gradient descent, New-
ton’s method, due to the fact that PSO is computationally
less expensive and converges faster. Moreover, in most of
the cases gradient descent failed to converge to the global
minimum, opposed to PSO.

2.3 Build sparse and representative pose manifolds

Given a sample ω ∈ R
m and a matrix D = [d1,d2, . . . ,

dn] ∈ R
m×n where D is an overcomplete dictionary with

n elements, sparse representation attempts to derive a coef-
ficient vector s ∈ R

n , possessing as many zero coefficients
as possible and to simultaneously reconstruct ω as a linear
combination of D. This is formally expressed as:

mins ||s||0
subject to ω = Ds (2)

where ||s||0 denotes the l0-norm, i.e. the number of non-zero
elements of vector s. However, solving Eq. 2 is an NP-hard
problem, i.e. the most accurate method to derive a global
solution is to exhaustively try out all possible subsets of s.
Nevertheless, the equivalence between l0 and l1 minimization
problem has been shown, under the assumption that the solu-
tion s0 is sparse enough (Tsaig and Donoho 2006). Making
one of those theoretical findings, the desired sparse solution
s can be extracted via the minimization of the equivalent l1
problem, which is solvable in polynomial time, i.e.:

mins ||s||1
subject to ω = Ds (3)

Moreover, the strict equality constraint in Eq. 3 has been
extended to an error-tolerant scheme, due to the existence of
noise in real-life applications, leading to a more robust form:

mins||s||1
subject to ||ω −Ds|| ≤ ε (4)

where ε ∈ R is the error tolerance.
Once the data matrix M=[m1,m2, . . . ,mt ] ∈ R

2∗||bk ||×t

has been extracted, where 2 ∗ b j is the number of features
and t is the number of samples, the l1-norm is applied to
every sample, expressing each one as a linear combination of
the remaining data set. Moreover, the minimization criterion
is enhanced by the addition of one extra constraint and is
formulated as follows:

minri ||ri ||1
subject to mi = Mri , i = 1, 2, . . . , t

1 = 1T ri (5)

For each ri ∈ R
t the i − th value equals to zero, due to

the fact that the corresponding mi sample has been removed
prior to the minimization. The elements of a ri vector denote
the degree of participation of the remaining data set in order
(ri ) to be reconstructed. The reconstruction weight ri pro-
vides significant geometric capabilities, such as invariance
to rotations and scalings, while the new imposed constraint
attaches consistency to translations. Through this process we
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Fig. 3 The process of building the training set {rt , yt } used for the 3D
pose estimation module incorporates the division of the labeled datasets
into the training and the testing subsets, respectively. The built training

set is fed to the Radial Basis Function-based regressor g in order to
produce an accurate mapping between the input space V and the output
space Y

reproject the initial pose manifolds onto more compact,
highly representative subspaces.

2.4 Training phase

As described above, the members of the bunch-based archi-
tecture (clusters bk) are fed to the ellipse fitting module for
the purpose of efficient manifold modeling. The aforemen-
tioned procedure proceeds with iteration over several images
of numerous objects. Along with this repeated process there
is a need to cope with the 2D-2D feature correspondence
problem to recall patterns that hold highly distinguishable
data. We have gathered a large collection of object images
shot every 50 accompanied by the corresponding ground truth
6 DoF pose measurements stored in the vector yt . Figure 3
is drawn with the view to illustrate the process of building
the training set

{
rt , yt

}
, the task of sparse pose manifolds

modeling and network simulation.

3 Experimental results

In the following section we present both qualitative and
quantitative results, as obtained by the proposed method. It
becomes apparent that the effectiveness of the method pre-
sented in this paper relies on its efficiency to build highly
representative and sparse manifolds with the view to pro-
vide accurate 6 DoF measurements related to geometrical
configurations of objects in the 3D space. Towards this end
we compared the efficiency of the proposed framework with

other state-of-the-art approaches used in the solution of the
3D object pose recovering problem. More specifically, the
methods chosen:

– Incorporate a part-based module for 3D pose estimation
like that in Hinterstoisser et al. (2007) (abbreviated as
N3M)

– Emphasize on manifold modeling for 3D pose recovering
like that in Mei et al. (2011) (abbreviated as SMM)

– Utilize a common least squares-based benchmark tech-
nique (Lowe 1999); also adopted in proposed frameworks
more recently (Ma et al. 2011) (abbreviated as LS-based)

– Encompass a conventional dimensionality reduction
scheme as presented in Yuan and Niemann (2001) (abbre-
viated as PCA-based).

At this point, we wish to point out the critical lack of
databases containing images of objects in shifting 3D geo-
metrical configurations, together with their corresponding
ground truth measurements. Here, we make use of the only
available datasets viz. COIL-100 (Nayar et al. 1996) and
CVL(Viksten et al. 2009), whilst we address the issue of
the limited amount of 3D datasets by expanding our train-
ing set with artificially rendered images for a collection of
objects available at http://www.evermotion.org/. The train-
ing set is essentially comprised of object images from the
COIL-100 (Nayar et al. 1996), CVL (Viksten et al. 2009)
(images of uncluttered background) and Evermotion (2012)
databases. Moreover, in order to derive accurate and repre-
sentative results we performed a leave-one-out notion, with
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respect to the classes. Additionally, the efficiency of the pro-
posed technique is further assessed by comparison to real
images of objects in cluttered environments (Viksten et al.
2009).

3.1 Number of clusters bk and size of the training
set

{
rt , yt

}

The constructed sparse pose manifolds, fed to the RBF-based
regressor to produce the accurate input-output space map-
ping, are of 2*||bk || dimensionality (with bk representing
the number of the members of the bunch-based structure
extracted via unsupervised clustering). According to the lit-
erature, there are two ways to choose the correct number of
clusters: a) the “elbow” method, where the right number of
clusters is considered producing the maximum discrepancy
between two neighboring values of the cost function; b) by
evaluating the clustering process based on a downstream pur-
pose (in our case the 6 DoF object pose estimation). We have
adopted the second approach since we wish to solve the object
pose estimation problem, rather than the efficient clustering
one. Accordingly, and after exhaustive testing, the number of
clusters was set to 8, as it exhibits low generalization error at
high performance levels. We should further point out that our
method is not limited necessarily to the selection of SIFT or
the Mixture Decomposition Scheme. It is, nevertheless, true
that the aforementioned algorithms have shown to be more
effective in representing both appearance and geometry of
the objects. Moreover, since affine changes in illumination
may affect the performance of the descriptor, each feature
vector is normalized to unit length for the sake of preserv-
ing invariance under such circumstances. Accurate 3D target
pose measurements are provided through the simulation of
a regressor whose input vectors are preprocessed by a RBF
kernel. The same principle applies to this feature of the pro-
posed algorithm; in the sense that our system does not depend
on the selection of the kernel, even if the RBF provided more
accurate results.

Our labeled training set
{
rt , yt

}
is built through an

iterative procedure that constructs t training examples by
means of the architecture presented in Sect. 2. Input vec-
tors rt of 2*||bk || dimensionality are accompanied with the
respective 6-dimensional ground truth estimations yt cor-
responding to known object poses. Objects used for train-
ing are either placed on a turntable and shot every 50 with
changing camera poses (Viksten et al. 2009) or artificially
rendered (http://www.evermotion.org/) under varying view-
points through Blender (2011). In contrast to other related
works, we do not utilize conventional dimensionality reduc-
tion schemes, e.g. PCA, prone to the inevitable loss of infor-
mation. The size of the training set, without the addition of
noisy vectors or others caused by partially occluded objects,
is [2 ∗ bk × 100, 000], that is 1,000 images/object. Ground

truth measurements yt are determined by storing the cam-
era’s rotational and translational parameters through a pre-
defined moving path in the 3D space (6 DoF) and with a
given time step. With the addition of noisy input vectors and
partial occlusions-related ones, the size of the training set{
rt , yt

}
is [2 ∗ bk × 250, 000]. This results in large compu-

tational burden for even a state-of-the-art workstation; typ-
ically requiring approximately 200 h on the expanded ver-
sion of the training set. Preliminary experimental results for
both un-occluded objects and partially occluded targets are
depicted in Fig. 4.

3.2 Dealing with occlusions

One of the most frequent problems in computer vision is the
partial occlusion of objects with which contemporary frame-
works are severely restricted in coping with. We consider this
issue by introducing (a) noisy input vectors and (b) images
of objects with artificially generated partial occlusions to
various degrees. The percentage of obstruction lays in the
range of [0–60] with a black rectangle of random size being
arbitrarily overlaid on the surface of the training object. As
shown in Bishop (2006), training with noise approximates
Tikhonov’s regularization theorem, whilst bootstrapping the
performance of the learning procedure. In the Appendix
we demonstrate how the training with noisy input vectors
is adjusted, adequately in our case. Figure 4 illustrates the
visual outcome of the proposed 3D object pose estimation
module for non-occluded and partially occluded objects. We
deal with the cluttered background by utilizing a contempo-
rary image segmentation technique, such as that presented
in Shi and Malik (2000). In order to evaluate the perfor-
mance of the proposed 3D pose estimation approach under
various degrees of partial occlusions we make use of the cri-
terion stated in Hinterstoisser et al. (2007). According to this
particular metric, a measurement of the 3D pose of a tar-
get is taken as accurate for all the cases where the sum of
error of the rotation parameters is less than 50. As depicted
in Fig. 5(a), our sparse pose manifold modeling approach
is shown to be more tolerant to partial occlusions (span-
ning 0 to 95 percentage of coverage) as opposed to N3M
(Hinterstoisser et al. 2007), SMM (Mei et al. 2011), LS-
based (Ma et al. 2011) and PCA-based (Yuan and Niemann
2001). We have further tested the accuracy of our method,
since both our training set and those of other related works
contain images of objects shot every 50 that might have
resulted in overfiting the built models. Figure 5(b) depicts
the respective comparative results for a permissible error of
30, whereas both experimental sets of Fig. 5 show results
obtained from simulated networks with over 250 testing
examples.
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Fig. 4 The visual outcome of the proposed approach for un-occluded and partially occluded (under varying percentages) objects in cluttered
backgrounds

3.3 Accuracy of 6 DoF pose estimation and object
manipulation

In this section we demonstrate the accuracy of the Sparse
Pose Manifolds method for the particular tasks of 6 DoF
pose recovering and object manipulation. With a view our
method to be comparable to other state-of-the-art method-
ologies, the experimental setup for eye-in-hand performance
testing shares common spirit with the one presented in Ma et
al. (2011). However, we possess a 5 DoF robotic arm that does
not allow a complete evaluation of the 6 DoF estimation of
our method. We have addressed this issue by introducing ren-
dered images of different objects captured by a moving cam-
era in an artificial environment (http://www.blender.org/).

The pose parameters of the camera are considered to be the
groundtruth measurements. Furthermore, in order to demon-
strate the generalization capabilities of our method we uti-
lize unknown objects that belong to 6 general object classes,
i.e. box-shaped objects (e.g. a Rubik’s cube), cars, motorcy-
cles, balls, 4-legged animals and cups. Besides these 6 object
classes, the proposed method is able to generalize to handle
arbitrarily shaped objects. Ground truth measurements cor-
respond to the pose parameters of a moving camera fixated to
the test object laying at a predefined position in the 3D space.
Figures 6 and 7 illustrate the efficiency of our method for all
the test objects of the 6 different object classes. Thereupon,
the proposed method is shown to exhibit high efficiency lev-
els in recovering the 3 DoF translation parameters since they
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Fig. 5 Comparative evaluation
of the tolerance of the proposed
method under various degrees of
partial occlusions for a
permissible error of 50 (a) and
30 (b), respectively

match, almost exactly, the ground truth measurements pro-
vided through rendering. Moreover, the estimated rotational
parameters for all the objects under test only slightly differ
from the ground truth.

The proposed method is capable of providing accurate 6
DoF pose estimations regardless of the class of the object
(see Figs. 6 and 7). From the detailed study of the experi-
mental simulations several conclusions are drawn about the
underlying capacities of the Sparse Pose Manifolds. In par-
ticular, objects belonging to the classes of cup and 4-legged
animal, are seen to cause larger oscillations in the estimated
rotational parameters, leading to a slightly decreased per-
formance of the object manipulation module as a result. In
essence, the more regular the shape of an object the higher the
performance of the 3D pose recovering and grasping mod-
ules. More specifically, it is noted that ellipses with lower
eccentricities lead to more distinguishable manifolds, while
circle-like extracted ellipses lead to low dimensional data that

result in notable degradations in the performance of the 6 DoF
pose estimation method. As a result, prismatic objects, such
as cars and motorcycles evinced higher grasping accomplish-
ment frequencies as contrasted to balls, 4-legged animals and
cups. As the estimation of the pose of any object relies on the
ellipse fitting module, it is straightforward to claim that the
designed pose model is feature-sensitive rather than shape-
based. This particular attribute of our method facilitates the
efficient addressing of issues raised by symmetrical objects,
e.g. a ball. Table 1 depicts the condensed results after execut-
ing 250 grasping operations for 6 different objects. Although
we possess a 5 DoF robotic arm, we tackle the non-holonomic
problem by positioning the objects on frames perpendicular
to the working table, whilst the respective response of the
network was set to zero. Moreover, a manipulation opera-
tion is considered as a successful one, in cases where the
robot arm flawlessly grasps the testing object. We would like
to note that the mechanical attributes of the gripper enabled
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Fig. 6 6 DoF object pose estimation for a box-shaped object, a motorcycle and a 4-legged animal, along with the corresponding ground truth
measurements

Fig. 7 6 DoF object pose estimation for a car, a ball and a cup, along with the corresponding ground truth measurements

the manipulation of any object belonging to the respective
classes.

The proposed methodology was compared to the classic
KNN classification algorithm. The training matrix for the
KNN was the same as the one used for the regressor and the
corresponding labels are the poses (in degrees) of training
samples. Concerning whether a pose of a test sample has

been accurately classified, we provided an error tolerance of
±5 degrees from the ground truth. The KNN was tested using
1 and 3 number of neighbors, i.e K=1 and K=3. The results
are summarized in Table 2. The accuracy of the KNN in com-
parison with the regressor in the proposed technique is sig-
nificantly inferior, for the aforementioned reasons. Besides
the reduction of the success rate, the standard deviation was
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Table 1 This summary table illustrates the accuracy along with the cor-
responding standard deviations (σ ) of the proposed method in accom-
plishing grasping operations with respect to multiple objects belonging
to 6 different classes

Object class Success rate % Std (σ ) Mean eccentricity Std (σ )

Box-shaped 97.2 0.9 0.31 0.09

Car 95.6 1.1 0.44 0.12

Motorcycle 92.8 1.6 0.61 0.11

Ball 88.4 2.5 0.76 0.08

4-legged animal 87.9 2.9 0.84 0.09

Cup 86.6 3.3 0.87 0.07

As it can be seen, the success rate is closely related to the mean eccen-
tricity of the extracted ellipses, since smaller eccentricity values imply
higher manipulation rates

Table 2 Summarizing results for the KNN classification experiments

Object class Success rate
% (K=1)

Std (σ )
(K=1)

Success rate
% (K=3)

Std (σ )
(K=3)

Box shaped 94.7 2.6 94.2 2.3

Car 91.5 3.2 94.5 3.0

Motorcycle 92.0 1.8 95.5 1.1

Ball 86.2 3.4 86.1 2.5

4-legged animal 83.3 3.7 83.8 2.9

Cup 82.6 3.4 82.8 3.2

increased dramatically. There are object classes, such as the
box shaped and the car where the standard deviation was
over-doubled. The comparison between the number of neigh-
bors, suggest that for K=3 the system improved its success
rate in most cases, yet for two object classes, box shaped and
ball, the usage of K=1 provided slightly better results. More-
over, for K=3 the standard deviation was improved for five
out of six classes, indicating that for number of neighbors
K=3 the system provide more stable results.

3.4 Real-time execution and testing with real objects

The calibration procedure set the camera’s extrinsic parame-
ters corresponding to its pose in the 3D working space, in
addition to its holding of information of its position rela-
tive to end effector’s coordinate system and the frame of the
robot itself. The experiments ran on an intel i5 2.4 GHz dual
core processor with 8 GB RAM. The resolution of images
was 640×480 pixels, while the frame rate was 5 Hz. The
most time demanding module of the proposed method (apart
from the training session which is performed off-line) is that
of extracting SIFT features. To achieve real-time execution,
SIFT is applied over the complete test image only for the
first frame, with the view to obtain initial set of SIFT fea-
tures. Then, at each subsequent time step, SIFT extraction

is limited to a smaller region of interest (ROI) within the
image containing features whose distance from their mean
is smaller than 3 times (set experimentally) their standard
deviation. We have further evaluated the performance of our
method, in several experimental tests that involve either eye-
in-hand or eye-to-hand camera configurations with the use of
realobjects. In the videos accompanying the paper in hand1,
it can be seen: (a) how our method is capable of efficiently
guiding a robotic gripper to grasp an unknown object (eye-
to-hand version) and (b) the performance of the 6 DoF pose
estimation module (eye-in-hand version). Figures 8 and 9
present in a more illustrative form the execution stages of
the proposed method, in its eye-to-hand version, from the
process of ellipse fitting to the efficient accomplishment of
manipulation tasks for a car and a box, respectively. The
lighting conditions were kept controlled, as the main goal
in the conducted experiments was to prove that sparse pose
manifolds are feasible and can provide efficient solutions to
the pose estimation problem. In a more demanding scenario,
the proposed algorithm can be enriched with illumination
compensation capabilities (Vonikakis et al. 2013).

4 Discussion

In this paper we present a novel solution to the automatic
manipulation of unknown objects based on the first integrated
research attempt to formulate Sparse Pose Manifolds. The
key ideas underlying the proposed method are that: a) differ-
ent objects viewed under the same perspective share identical
poses, which can be efficiently projected onto a well-defined
and highly distinguishable subspace; and b) the reprojec-
tion of initial manifolds onto sparse and highly representa-
tive subspaces lead to increased generalization capabilities
of the method. Towards this end, we propose an integrated
image understanding architecture that imposes upon a bunch-
based structure, involving the unsupervised clustering of the
extracted features, whilst encapsulating both appearance and
geometrical attributes of the objects. Through the process of
ellipse fitting we build initial pose manifolds of low dimen-
sionality, therefore, minimizing the complexity of the system
and avoiding the usage of conventional dimensionality reduc-
tion schemes. In addition, we post-process the established
pose manifolds via l1 norm minimization to build sparse
and compact input vectors characterized by large discrim-
ination and generalization capacities. We believe our work
makes the following contributions: a) we show that there are

1 Grasping a pliers:http://www.youtube.com/watch?v=J_gpPu6ZYQQ,
Grasping a box-shaped object:http://www.youtube.com/watch?
v=cOF0RdeJ6Zg, pose estimation of a car: http://www.youtube.com/
watch?v=CSoFMk48DmM, pose estimation of a box-shaped object
http://www.youtube.com/watch?v=RTe6usXm9qs.
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Fig. 8 Upper: Images obtained through the eye-to-hand camera are fed
to the ellipse fitting process to provide the corresponding results. Here,
the black circles represent the two foci of the ellipse while the green
ones stand for the members of the bunch-based architecture. Lower:

After the establishment of the initial pose manifolds and their reprojec-
tion onto a more sparse and highly representative subspace, the robotic
arm is adequately configured to grasp an unknown test object (e.g. car)

Fig. 9 Upper: Regardless of the class of the unknown test object the
ellipse fitting process is performed every 5 frames in order to pro-
duce low dimensional sparse input vectors. Lower: The latter are fed
to the regressor that provides accurate estimations about the pose of

the unknown test object (e.g. box). These measurements are then trans-
fered to the controller of the robot that, in turn, adjusts its 5 DoF joints
to perform a grasping task

indeed manifolds that can be sufficiently modeled through
a training session with several objects under varying poses;
b) the proposed bunch-based architecture extracts new fea-
tures that enjoy both appearance and geometrical attributes of
the objects, whilst demanding less supervision during train-
ing; c) through the minimization of the l1 norm we establish
sparse and representative pose manifolds that are fed to a
RBF-based regressor to recover the mapping between input
and output spaces.

We can furthermore claim that our work is shown to be
more tolerant to partial occlusions as compared to other
related methods, primarily due to the following reasons: Our
bunch-based architecture extracts features that enjoy both
appearance and topological attributes, in contrast to the N3M
method, for example, requiring large amount of inter-part
connections for accurate measurements. Regarding the SMM
method, it is noted that it abstracts parts of objects in a super-
vised manner through the realization of the PDF associated to
the joint distribution of appearance and geometry properties

of the object. However, the main drawback of SMM is that it
is very sensitive to partial occlusions due to the fact that the
extracted parts correspond to specific regions on the surface
of the object (e.g. the tire of a car) notwithstanding the lim-
ited dataset used for training (as it contains only cars). More-
over, the SMM method relies on a statistical manifold mod-
eling approach that is based on the operations of expansion
and alignment in order to minimize the labeling ambiguity.
The authors of SMM utilize video sequences in place of still
images, hence, decreasing the reliability of the ground truth
measurements. These operations are used in order to facilitate
the efficient categorization of testing objects into the respec-
tive classes (which hold data of poses that are similar to those
used for training). In contrast, the proposed SPM modeling
technique establishes manifolds that, through the unsuper-
vised clustering subroutine and the ellipse fitting procedure,
hold highly distinguishable data that can be easily classi-
fied into the respective classes. Furthermore, our method is
also less affected by partial occlusions as compared to the
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LS-based and PCA-based methods primarily due to the lin-
ear mapping between input and output space and, secondly,
due to the high dimensional input vectors of limited discrim-
ination capacities. More conclusively, experimental results
provide evidence of low generalization error rendering thus
justification to our theoretical claims. It should also be noted
that, box-shaped objects (with low eccentricity values) as
opposed to objects belonging to the classes of 4-legged ani-
mals, cups and balls (with higher eccentricity values), achieve
higher rates of success in the particular task of performing a
grasp on unknown targets. Although sphere-like objects are
the most regular objects in the real world, their projection
onto a 2D image forms a circle that possesses fewer DoFs
than an ellipse, which leads to singular configurations. More-
over, the extracted features of targets belonging to the classes
of 4-legged animals, cups and balls are closer to a circle rather
than an ellipse and exhibit slightly reduced rates of success in
object manipulation tasks, as a result. Finally, with regards to
future work, we aim to concentrate on designing and imple-
menting an advanced manifold modeling structure that lays
its foundations in the attributes of a 3D ellipse fitted over 3D
features obtained from an RGB-D depth camera. Intuitively,
such a new architecture accompanied by an exhaustive train-
ing session with numerous examples should represent a new
stream of solutions to the object manipulation problem.

Acknowledgments The authors would like to thank Nikolaos
Metaxas-Mariatos for his help in conducting the experimental valida-
tion of the proposed method.

Appendix

Formulation of bunch-based architecture

Given an image of an object with certain pose, we first
extract the 2D locations of the ρ SIFT keypoints denoted
as vζ ∈ R

2. Then we perform clustering over the loca-
tions of the extracted interest points (input vectors vζ , ζ =
1, 2, . . . , ρ) in order to account for the topological attributes
of the object. Supposing there are γ clusters denoted as
bk, k = 1, 2, . . . γ , we consider basic Bayesian rules not-
ing that a vector vζ belongs to a cluster bk if P(bk|vζ ) >

P(bζ |vj), ζ, k = 1, 2, . . . , γ, ζ �= j . The expectation of the
unknown parameters conditioned on the current estimates
Θ(τ ) (τ denotes the iteration step) and the training samples
(E-step of the EM algorithm) are:

J (Θ; Θ(τ )) = E
[ ρ∑

i=1

ln(p(vζ |bk; θ)Pk)
]

=
ρ∑
ζ=1

γ∑
k=1

P(bk|vζ ;Θ(τ ))ln(p(vζ |bk; θ)Pk) (6)

with P1×γ = [P1, . . . , Pγ ]T denoting the a priori proba-

bility of the respective clusters, θ̂2×γ = [θT
1 , . . . , θγ

T ]T
corresponding to the θk vector of parameters for the k − th

cluster and Θ3×γ = [ ˆθT ,PT ]T . According to M-step of the
EM algorithm, the parameters of the γ clusters in the respec-
tive subspace are estimated through the maximization of the
expectation:

Θ(τ + 1) = arg max
Θ

J (Θ;Θ(τ )) (7)

resulting in

ρ∑
ζ=1

γ∑
k=1

P(bk|vζ ;Θ(τ )) ∂
∂θk

ln(p(vζ |bk; θk)) = 0 (8)

while maximization with respect to the a priori probability
P gives:

Pk = 1

ρ

ρ∑
ζ=1

P(bk|vζ ;Θ(τ )) with k = 1, . . . , γ (9)

It is apparent that the optimization of Eq. 8 with respect
to P stands for a constraint maximization problem that has to
obey to Pk ≥ 0, k = 1, . . . , γ and

∑γ

k=1 Pk = 1. We revise
the Lagrangian theory that states:

Given a function f (x) to be optimized subject to several
constraints built the corresponding Lagrangian func-
tion as L(x, λ) = f (x)−∑

λ f (x).

Following on from the above statement, we denote the
respective (to Eq. 6) Lagrangian function as:

J (P, λ) = J (Θ;Θ(τ ))− λ
( γ∑

k=1

Pk − 1
)

We obtain λ and Pk though:

∂
J (P, λ)
∂Pk

= 0⇒

∂

( ∑ρ
ζ=1

∑γ

k=1 P(bk|vζ ;Θ(τ ))ln(p(vζ |bk; θ)Pk)
)

∂Pk
−

− λ(
∑γ

k=1 Pk − 1

∂Pk
= 0⇒

Pk = 1

λ

λ∑
ζ=1

P(bk|vζ ;Θ(τ ))

Since
γ∑

k=1

Pk = 1,we can derive that λ = ρ

resulting in the final apriori probability of the k − th

cluster of Eq. 9:
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Pk = 1

ρ

ρ∑
ζ=1

P(bk|vζ ;Θ(τ )) with k = 1, . . . , γ

Training with noise

The performance of the proposed regressor-based 3D pose
estimation module is bootstrapped by adding noise to the
input vectors fed to the RBF-kernel during training. In the
following passage we present a slightly modified version of
the Tikhonov regularization theorem as adjusted to the needs
of our case. In cases where the inputs do not contain noise
and the size t of the training dataset tends to infinity, the
error function containing the joint distributions p(yλ, r) (of
the desired values for the network output gλ) assumes the
form:

E = lim
t→∞

1

2t

t∑
k=1

∑
λ

{gλ(rk;w)− yλk}2

= 1

2

∑
m

∫ ∫
{gλ(rk;w)− yλk}2 p(yλ, r)dyλdr

= 1

2

∑
m

∫ ∫
{gλ(rk;w)− yλk}2 p(yλ|r)p(r)dyλdr

Let η be a random vector describing the input data with prob-
ability distribution p(η). In most of the cases, noise distri-
bution is chosen to have zero mean (

∫
ηi p(η)dη = 0) and

to be uncorrelated (
∫

ηiη j p(η)dη = varianceσi j ). In cases
where each input data point contains additional noise and is
repeated infinite times, the error function over the expanded
data can be written as:

Ẽ = 1

2

∑
m

∫ ∫ ∫
{gλ((rt;w)+ η)− yλk}2

p(yλ | r)p(r)p(η)dyλdrdη

Expanding the network function as a Taylor series in powers
of η produces:

gλ((rt;w)+η) = gλ(rt;w)+
∑

i

ηi
∂gλ

∂ri

∣∣∣∣
η=0
+

+ 1

2

∑
i

∑
j

ηiη j
∂2gλ

∂ri∂r j

∣∣∣∣
η=0
+O(η3)

By substituting the Taylor series expansion into the error
function we obtain the following form of regularization term
that governs the Tikhonov regularization:

Ẽ = E + variance ×Ω

with

Ω = 1

2

∑
m

∑
i

∫ ∫ {
(
∂gλ

∂ri
)2 + 1

2
{gλ(r)− yλ}∂

2gλ

∂r2
i

}

p(yλ|r)p(r)drdyλ
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