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Abstract

With the number of videos growing rapidly in modern
society, automatically recognizing objects from video in-
put becomes increasingly pressing. Videos contain abun-
dant yet noisy information, with easily obtained video-level
labels. This paper targets the problem of video-based ob-
ject recognition, whilst keeping the advantages of videos.
We propose a novel algorithm, which only utilizes the weak
video-level label in training, iteratively updating the clas-
sifier and inferring the object location in each video frame.
During testing we obtain more accurate recognition results
by inferring the location of the object in the scene. The
background and temporal information are also incorpo-
rated in the model to improve the discriminability and con-
sistency of recognition in video. We introduce a novel and
challenging YouTube dataset to demonstrate the benefits of
our method over other baseline methods.

1. Introduction
With the fast development of video collection and stor-

age techniques, our lives have become filled with all kinds
of videos. The number of videos uploaded on the In-
ternet such as YouTube is increasing exponentially. The
numerous monitoring cameras all over the world working
for 24 hours everyday also produce countless surveillance
footage. The demand of automatically understanding the
semantic content of a video, such as recognizing the ob-
ject in it is stronger than ever. However, compared with
the large amount of research on image-based object recog-
nition [4, 17, 18, 26] , video-based object recognition is rel-
atively underexplored.

Video-based object recognition has its particular advan-
tages. Firstly, a video typically contains multiple views of
the target object. It possesses much more information than
a single image and is prone to yielding better recognition re-
sult. Secondly, working with videos saves a large amount of
annotation effort. A training video consisting of hundreds
of images only requires one label, which is much less effort

than labelling these images, let alone the finer bounding box
annotation for image-based detection problem.

Video-based object recognition, however, also raises
new challenges. Videos, especially those on the Internet,
are totally unconstrained. They vary in style, length, qual-
ity, resolution, etc. They are often taken from the real-world
wild environments, which bring in all kinds of illumination
conditions and cluttering background. The scene shifts and
changes frequently resulting in: sometimes no target object
in it, sometimes multiple target objects in it. The target ob-
ject in a video also varies a lot: sometimes it is as small as
a dot; sometimes it is so big and only partially shown in the
scene. Due to the aforementioned issues, the information in
a video is very noisy, making video-based object recogni-
tion very challenging.

In this paper, we aim at solving the problem of video-
based object recognition, whilst keeping the advantages of
more information and less annotation effort of videos. Note
that our target is to categorize a video into one of objects
in the dataset, and the only label we have for training the
model is the video-level label – the object class of each
video. Inspired by the objectness methods [1, 3, 5, 14, 25],
which reduce the search space and generate the potential
object areas in an image in unsupervised ways, and La-
tent SVM methods [10, 28], which solve the weakly super-
vised problems by introducing latent variables, we propose
a novel algorithm for object recognition in video, which
only uses the weak video-level label, jointly inferring the
object location in each frame and recognizing the object in
the video. Once the object location is obtained, the back-
ground information is added as a complement of the ob-
ject information to improve the discriminability, and tem-
poral information is incorporated to keep the consistency of
recognition decision in a video.

To demonstrate the benefits of the proposed method,
we collected a video dataset for object recognition from
YouTube, named YouTube dataset. These in-the-wild
videos are challenging for object recognition due to vari-
ous factors, including occlusion, background clutter, scale
variation, illumination change, and motion blur. To the best
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of our knowledge, there is no such dataset publicly available
for video-based object recognition. The introduction of the
dataset is another contribution of this work.

2. Related work
The majority of algorithms for object recognition [4, 17,

18, 26] assume the input is a single image. In recent years,
there has been an increasing attention to object recognition
in videos [12, 15, 16, 21, 23, 24]. There are mainly two di-
rections among the previous work. One is to utilize the tem-
poral information in video and improve local video descrip-
tors by feature tracking [12, 15, 23, 24]. The other is to first
run the image-based recognition on individual frames of a
video and subsequently voting for the video class [16, 21].
Both ways have been proven to be successful.

This paper follows the voting method, aiming at solv-
ing the recognition problem by localizing the object in each
frame of a video. Since only video-level labels are provided,
the localization and recognition problem is in a weakly su-
pervised scenario. There are several previous works on
weakly supervised object localization [8, 13, 19], but they
mainly focus on the binary localization problem, rather than
utilize it for the multi-class object recognition one. These
works mainly rely on the objectness methods to initial-
ize the localizer, reducing the search space and generat-
ing the location candidates, such as selective search [25],
objectness [1], efficient subwindow search [14], large-
displacement optical flow [5], and superpixels merging [3].
We use the selective search method [25] for initialization in
this paper.

For weakly supervised problem, Multiple Instance
Learning (MIL) [2, 11] and Latent SVM [10, 28] are the two
main learning frameworks for it. MIL has also been used
for image-based object recognition and localization [7, 29].
It can be naturally extended to solve the problem of video-
based object recognition, by treating a video as a bag of
images, a video of the target object as a positive bag, and
a video without the target object as a negative bag. La-
tent SVM is more popular in solving the weakly super-
vised problem, including weakly supervised action local-
ization [22], view selection for action recognition [27], etc.

In this paper, we follow the Latent SVM framework to
jointly solve the object recognition and localization prob-
lems in videos. Different from the previous localization
work, our final target is the multi-class object recognition
in video, while localization is only the intermediate product
to help the object recognition.

3. Video-based object recognition
3.1. Model formulation

Given only the object class label of training videos, our
goal is to jointly recognize the object class of a testing video

and infer the location of the target object in each frame.
Potential candidate locations in each frame are generated by
a selective search method [25] and represented by a latent
variable h.

Given a video x, we select uniformly sampled sets of
frames {xt|t = 1, 2, ...} from x. Similar to the Latent SVM
[10, 28], we set fw(xt, y) as the score function for a video
frame xt and a class label y, measuring the compatibility
between the frame xt and the label y. fw(xt, y) is a linear
function consisting of three components:

fw(xt, y) = fwO,wB ,wT
(xt, y) = max

ht

[w′Oψ(xt, y, ht)

+ w′Bψ(xt, y, h̄t) + wTψ(xt, ht;xt−1, h
∗
t−1)] (1)

where latent variable ht represents the pixels of the im-
age at frame xt that belong to the object and h̄t the
rest. In other words, ht denotes the “foreground” and
h̄t the “background”. ψ(xt, y, ht) is the joint feature
mapping of the video frame xt, the label y and the ob-
ject location ht. w is the parameter of the score func-
tion that needs to be learned. The model is composed of
three components: object potential w′Oψ(xt, y, ht), back-
ground potential w′Bψ(xt, y, h̄t), and temporal potential
wTψ(xt, ht;xt−1, h

∗
t−1). The model parameter w is the

concatenation of the three components {wO;wB ;wT }.
Object Potential w′Oψ(xt, y, ht): It measures the com-

patibility of the video frame xt, the label y and the object
location ht. The joint feature vector ψ(xt, y, ht) aggregates
the feature points in the object area ht. It helps to a) lo-
calize the object (compact bounding box), b) remove the
background clutter and c) get a cleaner representation for
the object.

Background Potential w′Bψ(xt, y, h̄t): Background in-
formation h̄t is an important complement of object infor-
mation since it adds discriminability to recognition, i.e. air-
planes flying in sky, cars running on road, ships sailing in
water. The joint feature vector ψ(xt, y, h̄t) aggregates the
feature points in the background area h̄t, while preventing
features on the object area leaking into the background, im-
proving, thus, the localization accuracy.

Temporal Potential wTψ(xt, ht;xt−1, h
∗
t−1): It en-

forces a tracking constraint, i.e. at the tth frame (xt) the
object location ht should be similar with the one obtained
previously at (t− 1)th frame (xt−1).

ψ(xt, ht;xt−1, h
∗
t−1) = ||ψ(xt, ht)− ψ(xt−1, h

∗
t−1)||1

(2)

where h∗t−1 is the inferred object location at the xt−1
frame. ψ(xt−1, h

∗
t−1) and ψ(xt, ht) denote vectors of fea-

ture points in the extracted object bounding box at frames
xt−1 and xt, respectively. wT is a scaler value that controls
the weight of the temporal potential. We account for the
temporal information in a video to keep the consistency of
localization and increase the recognition performance.



Figure 1. Representative frames of Youtube dataset.

3.2. Learning and inference

Let {x1, ...,xn} denote a set of training videos and yi

the class label of object in video xi. The goal is to learn the
model parameter w = {wO;wB ;wT }, which facilitates
the efficient classification of a testing video into the correct
class along with the accurate localization of the target ob-
ject at each frame. Let {xit} be the set of frames of video
xi, uniformly sampled from the video, and yit = yi the cor-
responding class label of each frame. We utilize the latent
SVM framework [10, 28] for learning, i.e.:

minimize
wO,wB ,wT ,σi

t

1

2
||wO||2 +

1

2
||wB ||2 +

1

2
||wT ||2 + C

n∑
i=1

∑
t

σit

(3)

s.t. fwO,wB ,wT
(xit, y

i
t)− fwO,wB ,wT

(xit, y) ≥ 1− σit
∀i, ∀t, ∀y 6= yit,

σit ≥ 0 ∀i, ∀t.

The constrained optimization in Eq. (3) is equivalent to
the following unconstrained problem:

minimize
wO,wB ,wT ,σi

t

1

2
||wO||2 +

1

2
||wB ||2 +

1

2
||wT ||2+

C

n∑
i=1

∑
t

max{0, 1− fwO,wB ,wT
(xit, y

i
t) + fwO,wB ,wT

(xit, y)}

(4)

We use the Non-convex Regularized Bundle Method
(NRBM) [9] to optimize Eq. (4). NRBM combines bundle
methods and cutting plane techniques, while it iteratively
constructs an increasingly accurate piecewise quadratic
lower bound of the objective function. In each iteration,
a new cutting plane is found by the sub-gradient of the ob-
jective function and added to the piecewise quadratic lower
bound approximation. The algorithm starts from a random
w1 and generates a sequence of wi’s. The algorithm ter-
minates when the gap between the minimum of the approx-
imation function and the value of the objective function is
smaller than a predefined tolerant value ε.

Given the model parameter w, we want to jointly predict
the object class and estimate its position in a new testing
video x. The correct class and the bounding box parameters

Figure 2. Examples of challenging frames in YouTube dataset.

for the frame t are the ones that maximize the score:

(y∗t , h
∗
t ) = argmax

yt,ht

fwO,wB ,wT
(xt, yt) (5)

Finally, the object class of the video x is obtained through
voting the recognition results of all frames.

4. Experiments
4.1. Dataset

For evaluation, we collected a video dataset for object
recognition from YouTube. It contains 300 videos of 10 ob-
ject categories: airplane, ring, ship, car, guitar, pipe, horse,
teapot, pram, bicycle. The representative frames of each
category are shown in Figure 1. Each category contains 30
videos of different object instances of this category, from
which 10 videos are randomly chosen for training and the
other 20 videos are for testing. Each video lasts for 10 to
15 seconds, and 3 frames per second are uniformly sampled
for recognition.

The YouTube dataset is very challenging. These in-the-
wild videos from the Internet are totally unconstrained, with
different style, quality, and resolution. Some videos are
taken by mobile phones hold in hands, leading to blurred
frames (Figure 2(a)). The videos are mainly taken from the
real-world wild environment, with all kinds of illumination
conditions (Figure 2(a)) and cluttering background (Fig-
ure 2(b)). The objects in one category are also very diverse.
For example, the ships in ship category vary from ancient
boat to modern warship, shown in Figure 3. In teapot cate-
gory, there are 42 different teapots in the 30 videos, mean-
ing that some videos contain multiple teapots. The appear-
ance of an object in a video also changes largely: sometimes
it is as small as a dot; sometimes it is so big that it is only
partially shown in the video, as shown in Figure 2(c)(d).

Note that the existing YouTube-Objects dataset [20] is
for object detection task. It only contains around ten to
twenty videos for each class, meaning that there are not
enough videos for our video-based object recognition task.

4.2. Experiment results and discussion

We have compared the proposed method with the Ac-
cumulating Frame (Accum-Frame) [16, 21] and Multiple



Figure 3. Examples of different ships in ship category.

Figure 4. Examples of localization result: green – good, yellow –
ok, red – bad. Best viewed in color.

Instance Learning (MIL) [2, 11] methods for video-based
object recognition.

We use Dense SIFT (DSIFT) [4, 18] feature for all meth-
ods in the experiment. Then Pyramid Histogram Of visual
Words (PHOW) [4] and Bag-of-Words (BoW) [23] were
used for aggregating the DSIFT descriptors. Two layer
PHOW was used as the object representation in the pro-
posed method and the image representation in the compared
methods. BoW was used as the background representation
in the proposed method. The codebook size for both PHOW
and BoW were 512. Other settings follow the standard way
as in [4] and [23].

In Accum-Frame method, we first conduct the frame-
based recognition. A multi-class linear SVM is trained
from the extracted frames of training videos. Each frame of
testing videos is independently evaluated by the classifier.
Here, we use LIBSVM [6] with one-vs-one setting. Then,
three voting methods – Hard, Soft, and KNN voting – are
used to accumulate the results of frame-based recognition to
get the video class. They respectively use the label results,
the probability estimation of SVM, and K (empirically set
as 20) best frames to vote for the video class.

For MIL method, since a video can be seen as a bag of
frames (instances), MIL can be naturally used to handle the
noisiness of video data and perform the video-based ob-
ject recognition. The video of the target object is treated
as a positive bag, in which the frames containing the tar-
get object are seen as the positive instances, while other
frames which do not contain the target object or are cor-
rupted hence very noisy, are deemed as the negative in-
stances. The videos of other classes, which do not con-
tain the target object, are treated as negative bags. The
MILSVM algorithm [11] is used here.

Table 1 shows the experiment results on the YouTube
dataset. All parameters were set to report the best accura-
cies. For the proposed method, the model slack variable
coefficient was set as C = 10−4, and the optimization
stopping criterion was ε = 0.01. The result of Accum-
Frame was obtained from KNN voting, which boosted the

Table 1. Comparison experiment results on YouTube dataset. Our
proposed method achieves the best accuracy.

Method Accum-Frame MIL Our

Accuracy 57.5% 63.5% 69.5%

Table 2. Comparison with variant methods. OB: Object; BG:
Background; TP: Temporal information.

Method OB OB+BG OB+BG+TP

Image-based 54.34% 57.84% 59.28%
Video-based 63% 67.5% 69.5%

image-based recognition accuracy 49.16% to 57.5%. The
low accuracy of image recognition also demonstrates the
challenges of the YouTube dataset. The Hard and Soft vot-
ing methods got 55.5% and 57% respectively, slightly worse
than KNN voting. All of these results are significantly better
than image-based recognition, indicating the importance of
accumulating information in a video for object recognition.
MIL got a better accuracy 63.5% than Accum-Frame. This
is because MIL can iteratively filter out the noisy frames
(negative instances) and select the good frames (positive in-
stances) in a training video (a positive bag) to train the clas-
sifier, yielding a more accurate model than Accum-Frame.
Although KNN voting in Accum-Frame can also select K
good frames to vote for the video class, this selection pro-
cess is only in testing, which is not able to filter out the
noise information during training and leads to a not very
accurate model. Our proposed method achieves the best ac-
curacy 69.5%. The weakly supervised localization of our
method helps to separate the object and the background, so
that the feature points on the object and the background are
aggregated into two vectors separately. It not only makes
the object representation cleaner, but also adds the back-
ground information to improve the accuracy. The temporal
information of the video is also utilized to further improve
the result. In contrast, without the bounding box annotation,
the compared methods simply aggregate all the features in a
image into one feature vector, which is less discriminative.

Table 2 reports the performance of two variants of the
proposed method. OB is the method which only use the
object potential in the model. With the help of weakly su-
pervised localization, it has already achieved comparable
result 63% with MIL. In OB+BG, background potential is
added, which largely improve the recognition accuracy to
67.5%. It indicates that the background also has certain dis-
criminability and is a good complement to the object itself.
OB+BG+TP is the proposed method, with the temporal po-
tential added in the model. As the particular information in
video, temporal information helps keep the consistency of
the recognition decision in a video, and finally boosts the



accuracy to 69.5%. The video-based results are obtained by
voting technique on corresponding image-based results.

Figure 4 shows some localization results in testing. Most
of them are good, with compact bounding boxes on the ex-
act target objects. Some of them are not perfect, with loose
bounding boxes on parts of the target objects. Some are
very bad due to the noise, such as the clutters.

The proposed method is efficient. In training, it took
about 5 hours with the maximum iteration of 300. In test-
ing, it took only 0.19 second to classify a video on aver-
age. This excludes the time for object candidates genera-
tion and feature extraction, which are decided by their own
algorithms. These timing figures were measured on an Intel
Core i7 3.4GHZ×8 processor with 8GB RAM, for a Matlab
implementation.

5. Conclusion
We proposed a novel algorithm based on Latent SVM

and a new Youtube dataset for video-based object recogni-
tion. With only the video-level label in training, the pro-
posed algorithm is able to jointly recognize the object in a
testing video and infer its location in each video frame. It
comprehensively utilizes the background and temporal in-
formation of objects in video to accomplish the task. The
experiments on the Youtube dataset demonstrate the effec-
tiveness of the proposed method. In future, we plan to com-
bine Latent SVM and MIL to jointly perform the object lo-
calization and view selection in video for object recogni-
tion.
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